微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 机器人技术 > 传感器在多关节机器人系统实时避障中的应用

传感器在多关节机器人系统实时避障中的应用

时间:10-28 来源:互联网 点击:
四、结论

智能多关节机器人的实时避障问题,是现在机器人研究领域的重点和难点问题。在避障过程中,常常会面临无法预先知道、不可预测或动态变化的环境。机器人感知环境的手段通常是不完备的,传感器给出的数据是不完全、不连续、不可靠的,传感器信息融合的算法还存在着诸多问题。但由于传感器技术的飞速发展以及神经网络、模糊控制理论等学科的深入研究,及传感器信息处理方法的应用,为避障问题的最终解决提供了可能性,但是对于复杂的应用,仍不能令人满意,因此现存的问题也正是该领域的研究方向。

(1)传感器融合技术在近年来被引入到了机器人避障研究中,并已取得很好的成果,对于目前一些高精度的多关节机器人避障系统采用常规传感器还很难满足性能指标,因而开发新型传感器或按照一定融合策略构造传感器阵列以弥补单个传感器的缺陷,将是重要的研究方向。

(2)人工智能可使机器人避障系统本身具有较好的柔性和可理解性,同时还能处理复杂的问题,因而在未来的数据融合技术中利用人工智能的各种方法,以知识为基础构成多传感器数据融合仍将是其研究趋势之一。

(3)为了在实现机器人避障系统多传感器数据融合,处理器结构将朝并行体行结构发展,包括传感器功能的并行结构和算法功能的并行结构。

(4)在一个智能系统中,使用单一的智能控制方法往往不能取得满意的效果,应综合采用常规控制方法和智能控制方法,才能够取得良好效果。神经网络和模糊推理是避障研究中的两个重要工具,但是神经网络样本集的完整性研究尚未取得突破,将事件空间的每一点都作为网络的学习样本显然是不可取的;模糊逻辑推理则侧重于模糊规则的选取,但有些规则很难形式化描述,或者必须用大量的规则描述而增大运算量,这样就背离了模糊逻辑应用的初衷,因此近年来提出了基于多组传感器信息,利用神经网络技术实现机器人对当前感知环境的快速识别和分类,进而利用模糊逻辑技术实现安全避障的新方法,它将是有潜力的研究方向。

(5)在集中式多传感器系统研究时应该将仿真技术和实时控制技术结合起来,建立集成开发环境来处理传感器信号。对于分布式传感器系统,应寻求一种基于通讯的实现方法来处理传感器信号,这是传感器系统今后发展方向之一。

(6)机器人的避障系统愈高级,传感器就愈多,信息处理愈复杂,会遇到多速率采样问题。但是现有成熟的计算机控制理论涉及的都是单速率采样,即假定系统中所有A/D,D/A通道都以同样的采样速率工作。为填补此项空白,就很有必要研究多速率采样控制系统的建模,分析及设计方法。所以,机器人多传感器多速率采样控制系统研究是传感器系统今后发展方向之一。

(7)多关节机器人避障系统是一个复杂的智能系统。因而在实际应用中,必须综合考虑各种功能,这是一个涉及机械、电子、计算机、自动化、物理学等多学科的跨学科课题,任何新技术的出现都可能对该领域的研究带来突破性进展,因而在机器人研究的同时,必须密切关注相关学科的发展。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top