微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 机器人技术 > 机器人视觉(Robot Vision)简介

机器人视觉(Robot Vision)简介

时间:02-23 来源:互联网 点击:
机器视觉系统的组成

机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。

机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。

机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。

视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。

图像的获取

图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号

1、照明

照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。

过去,许多工业用的机器视觉系统用可见光作为光源,这主要是因为可见光容易获得,价格低,并且便于操作。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。但是,这些光源的一个最大缺点是光能不能保持稳定。以日光灯为例,在使用的第一个100小时内,光能将下降15%,随着使用时间的增加,光能将不断下降。因此,如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。

另一个方面,环境光将改变这些光源照射到物体上的总光能,使输出的图像数据存在噪声,一般采用加防护屏的方法,减少环境光的影响。

由于存在上述问题,在现今的工业应用中,对于某些要求高的检测任务,常采用X射线、超声波等不可见光作为光源。但是不可见光不利于检测系统的操作,且价格较高,所以,目前在实际应用中,仍多用可见光作为光源。

照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,照像机拍摄要求与光源同步。

2、图像聚焦形成

被测物的图像通过一个透镜聚焦在敏感元件上,如同照像机拍照一样。所不同的是照像机使用胶卷,而机器视觉系统使用传感器来捕捉图像,传感器将可视图像转化为电信号,便于计算机处理。

选取机器视觉系统中的摄像机应根据实际应用的要求,其中摄像机的透镜参数是一项重要指标。透镜参数分为四个部分:放大倍率、焦距、景深和透镜安装。

3、图像确定和形成摄像机输出信号

机器视觉系统实际上是一个光电转换装置,即将传感器所接收到的透镜成像,转化为什么算机能处理的电信号、摄像机可以是电子管的,也可是固体状态传感单元。

电子管摄像机发展较早,20世纪30年代就已应用于商业电视,它采用包含光感元件的真空管进行图像传感,将所接收到的图像转换成模拟电压信号输出。具有 RS-170输出制式的摄像机可直接与商用电视显示器相连。

固体状态摄像机是在20世纪60年代后期,美国贝尔电话实验室发明了电荷耦合装置(CCD),而发展起来的。它上分布于各个像元的光敏二极管的线性阵列或矩形阵列构成,通过按一定顺序输出每个二极管的电压脉冲,实现将图像光信号转换成电信号的目的。输出的电压脉冲序列可以直接以RS-170制式输入标准电视显示器,或者输入计算机的内存,进行数值化处理。CCD是现在最常用的机器视觉传感器。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top