传感器在多关节机器人系统实时避障中的应用
时间:10-28
来源:互联网
点击:
(2)电容耦合式传感器
电容耦合式传感器是当一物体接近传感器时电容发生改变,电容的改变可使振荡器起振或产生相移改变,以此来检测障碍物的存在。此类传感器性能稳定、可靠和耐用。缺点是由于传感器分辨率很低,在其测量的范围内不能分辨出物体的维数。机器人在处理时必须假设障碍物非常大,例如,如果障碍物的距离为2cm,被认为20∽30cm的物体来处理,这就大大限制了机器人手臂运作的空间。
(3)电涡流传感器
电涡流传感器通过向外发射高频的变化的电磁场,对周围的目标引起电涡流。电涡流的大小与传感器和目标物体之间的距离有关,电涡流产生的磁场与传感器的磁场方向相反。两个磁场相互叠加,就会减少传感器的电感和阻抗。采用适当的电路把阻抗的变化转换成电压的变化,就能计算出目标物体的距离。
电涡流传感器尺寸较小,可靠性较高,价格也较便宜,不但可以作为接近觉传感器,检测障碍物的存在和物体距离,而且可以采用适当的方法检测力、力矩或压力。测量精度比较高,能够检测0.02mm的微量位移,测量还具有方向性。但是,这种传感器的缺点是作用距离较短(一般不超过13mm)。另外,此传感器仅适用于障碍物为固态导体的检测。
(4)红外传感器
红外传感器是一种比较有效的接近觉传感器,经常被国内外学者应用在多关节机器人避障系统中,用来构成大面积机器人“敏感皮肤”,覆盖在机器人手臂表面,可以检测机器人手臂运行过程中的各种物体。传感器发出的光的波长大约在几百纳米范围内,是短波长的电磁波。红外传感器具有以下特点:不受电磁波的干扰、非噪声源、可实现非接触性测量。另外,红外线(指中、远红外线)不受周围可见光的影响,故可在昼夜进行测量。
同声纳传感器相似,红外线传感器工作处于发射/接收状态。这种传感器由同一发射源发射红外线,并用两个光检测器测量反射回来的光量。由于这些仪器测量光的差异,它们受环境的影响非常大,物体的颜色、方向、周围的光线都能导致测量误差。但由于发射光线是光而不是声音,可以希望在相当短的时间内获得较多的红外线传感器测量值。测距范围较近,大致为30cm以内。
3、传感器选择策略
传感器的选择好坏直接关系到多关节机器人采集周围环境信息量的多少,因此目前机器人避障系统选择传感器类型和数量有两种不同的方法:基于环境的优化原则选择法和基于任务选择法。
(1)基于环境的优化原则选择法:设计阶段的预选择以及适合环境和系统状态变化的实时选择,前者给出了恰当的传感器数量和操作速度之间的关系,该关系可决定多传感器避障系统中传感器单元的优化排列,后者通过贝叶斯方法利用任何先验的物体信息决定传感器的定位,使传感器对障碍物体假设不确定性最小。
(2)基于任务的选择法:此方法主要思想是基于避障的任务,将完成该任务的过程按时间及感知范围划分为若干段,即将任务分解,根据每个阶段所需的传感器信息合理地选择传感器的种类和数量。
三、传感器的信息融合
在智能机器人避障的系统中,因为任何传感器的功能都有限,必要时,应将多种传感器集成在一起,融合多种传感器信息,这样可以更正确、更全面的反映出外界环境的特征,为避障提供正确的依据。信息融合技术可以增加各类传感器信息的互补性、对环境变化的适应性,提高决策的正确性。
多传感器数据融合的基本目的是指通过对多(种,类)传感器数据的综合处理以获得比每个单一传感器更多的信息。也可以理解为对多传感器的原始信息加以智能化的综合,从而导出新的有意义的信息。这种信息的价值比单一传感器所获得信息要高得多,它有利于判断和决策。因此近年来多传感器信息融合技术系统已越来越多地应用于机器人的避障系统中,通过实验可以取得良好的效果。
1、传感器数据融合方法
多传感器的机器人避障系统中,各信息源提供的环境信息都具有一定程度的不确定性。另外,由于传感器数量较多,且多为非线性,要进行很好的全局优化和控制,处理量大。面对离散数据多、关联度大、输入信息不可线性化且要求融合结果可靠性高等特点,传统的数据融合方法(加权平均法、贝叶斯估计法、Dempster-Shafer证据推理方法等)不能很好地满足要求。对于多关节机器人避障系统而言,通常采用卡尔曼滤波法、产生式规则、模糊逻辑人工神经网络法,可以得到关于环境更加可靠、统一、精确的描述,便于判断与决策。
(1)卡尔曼滤波用于实时融合动态的低层次冗余多传感器数据,该方法用测量模型的统计特性递推决定统计意义下最优融合数据估计。由于机器人避障系统具有线性动力学模型,且系统噪声和传感器噪声是高斯分布的白噪声模型,卡尔曼滤波为融合多传感器数据提供唯一的统计意义下的最优估计。
应用到机器人避障系统的多传感器信息处理中,国内外学者经常选用的是联合式卡尔曼滤波法,其基本思想是采用一组并行运行的滤波器模块,每一个模块只处理某一个特定传感器的信息。另外,还采用了一个“主滤波器”对来自所有局部滤波器的信息进行融合。这种结构明显的优势在于:计算量平均分布在各个并行滤波器中,主滤波器的计算负担不大;具备了多种冗余信息,可以通过适当的重构算法设计提供强容错能力。
(2)产生式规则可以建立自然景象专家系统,根据多传感器的检测数据,使用符号来表示环境特征,这样可以更全面的反映避障系统的周围信息,为机器人的路径规划做准备。
(3)模糊逻辑法方法是用某种模拟人类的思维习惯的模型系统地反映机器人避障系统中多传感器数据融合过程的不确定性,并通过模糊推理来完成数据融合,得到预期的效果。
(4)人工神经网络法是一种仿效生物神经系统的信息处理方法,是通过有教师或无师自学算法进行网络学习,一旦学习完成,该神经网络就能够根据以网络权矩阵和网络拓扑结构形式存储的特征信息,基于此神经网络得到了一种进行决策思维的模型结构,通过综合来自于系统各种不同传感器的信息,从中抽取出单一传感器无法提供的准确可靠信息,这是在有环境交互的情况下处理多传感器信息的一种十分有效的方法。
此方法应用到机器人避障系统多传感器信息处理中,主要通过传感器在操作现场获得环境信息,过滤和预处理模块对传感信息进行修正和数字化,经安全机制判断后作为相应神经网络融合处理器的输入源,采用知识数据库作为神经网络融合器的选型和知识来源的辅助决策工具,应用程序接收融合结果,采取相应的控制策略,并发送控制命令给机器人驱动设备。这样可以快速准确地获得尽可能多的实际操作现场的环境信息,从而有效地完成多传感器的信息处理。
电容耦合式传感器是当一物体接近传感器时电容发生改变,电容的改变可使振荡器起振或产生相移改变,以此来检测障碍物的存在。此类传感器性能稳定、可靠和耐用。缺点是由于传感器分辨率很低,在其测量的范围内不能分辨出物体的维数。机器人在处理时必须假设障碍物非常大,例如,如果障碍物的距离为2cm,被认为20∽30cm的物体来处理,这就大大限制了机器人手臂运作的空间。
(3)电涡流传感器
电涡流传感器通过向外发射高频的变化的电磁场,对周围的目标引起电涡流。电涡流的大小与传感器和目标物体之间的距离有关,电涡流产生的磁场与传感器的磁场方向相反。两个磁场相互叠加,就会减少传感器的电感和阻抗。采用适当的电路把阻抗的变化转换成电压的变化,就能计算出目标物体的距离。
电涡流传感器尺寸较小,可靠性较高,价格也较便宜,不但可以作为接近觉传感器,检测障碍物的存在和物体距离,而且可以采用适当的方法检测力、力矩或压力。测量精度比较高,能够检测0.02mm的微量位移,测量还具有方向性。但是,这种传感器的缺点是作用距离较短(一般不超过13mm)。另外,此传感器仅适用于障碍物为固态导体的检测。
(4)红外传感器
红外传感器是一种比较有效的接近觉传感器,经常被国内外学者应用在多关节机器人避障系统中,用来构成大面积机器人“敏感皮肤”,覆盖在机器人手臂表面,可以检测机器人手臂运行过程中的各种物体。传感器发出的光的波长大约在几百纳米范围内,是短波长的电磁波。红外传感器具有以下特点:不受电磁波的干扰、非噪声源、可实现非接触性测量。另外,红外线(指中、远红外线)不受周围可见光的影响,故可在昼夜进行测量。
同声纳传感器相似,红外线传感器工作处于发射/接收状态。这种传感器由同一发射源发射红外线,并用两个光检测器测量反射回来的光量。由于这些仪器测量光的差异,它们受环境的影响非常大,物体的颜色、方向、周围的光线都能导致测量误差。但由于发射光线是光而不是声音,可以希望在相当短的时间内获得较多的红外线传感器测量值。测距范围较近,大致为30cm以内。
3、传感器选择策略
传感器的选择好坏直接关系到多关节机器人采集周围环境信息量的多少,因此目前机器人避障系统选择传感器类型和数量有两种不同的方法:基于环境的优化原则选择法和基于任务选择法。
(1)基于环境的优化原则选择法:设计阶段的预选择以及适合环境和系统状态变化的实时选择,前者给出了恰当的传感器数量和操作速度之间的关系,该关系可决定多传感器避障系统中传感器单元的优化排列,后者通过贝叶斯方法利用任何先验的物体信息决定传感器的定位,使传感器对障碍物体假设不确定性最小。
(2)基于任务的选择法:此方法主要思想是基于避障的任务,将完成该任务的过程按时间及感知范围划分为若干段,即将任务分解,根据每个阶段所需的传感器信息合理地选择传感器的种类和数量。
三、传感器的信息融合
在智能机器人避障的系统中,因为任何传感器的功能都有限,必要时,应将多种传感器集成在一起,融合多种传感器信息,这样可以更正确、更全面的反映出外界环境的特征,为避障提供正确的依据。信息融合技术可以增加各类传感器信息的互补性、对环境变化的适应性,提高决策的正确性。
多传感器数据融合的基本目的是指通过对多(种,类)传感器数据的综合处理以获得比每个单一传感器更多的信息。也可以理解为对多传感器的原始信息加以智能化的综合,从而导出新的有意义的信息。这种信息的价值比单一传感器所获得信息要高得多,它有利于判断和决策。因此近年来多传感器信息融合技术系统已越来越多地应用于机器人的避障系统中,通过实验可以取得良好的效果。
1、传感器数据融合方法
多传感器的机器人避障系统中,各信息源提供的环境信息都具有一定程度的不确定性。另外,由于传感器数量较多,且多为非线性,要进行很好的全局优化和控制,处理量大。面对离散数据多、关联度大、输入信息不可线性化且要求融合结果可靠性高等特点,传统的数据融合方法(加权平均法、贝叶斯估计法、Dempster-Shafer证据推理方法等)不能很好地满足要求。对于多关节机器人避障系统而言,通常采用卡尔曼滤波法、产生式规则、模糊逻辑人工神经网络法,可以得到关于环境更加可靠、统一、精确的描述,便于判断与决策。
(1)卡尔曼滤波用于实时融合动态的低层次冗余多传感器数据,该方法用测量模型的统计特性递推决定统计意义下最优融合数据估计。由于机器人避障系统具有线性动力学模型,且系统噪声和传感器噪声是高斯分布的白噪声模型,卡尔曼滤波为融合多传感器数据提供唯一的统计意义下的最优估计。
应用到机器人避障系统的多传感器信息处理中,国内外学者经常选用的是联合式卡尔曼滤波法,其基本思想是采用一组并行运行的滤波器模块,每一个模块只处理某一个特定传感器的信息。另外,还采用了一个“主滤波器”对来自所有局部滤波器的信息进行融合。这种结构明显的优势在于:计算量平均分布在各个并行滤波器中,主滤波器的计算负担不大;具备了多种冗余信息,可以通过适当的重构算法设计提供强容错能力。
(2)产生式规则可以建立自然景象专家系统,根据多传感器的检测数据,使用符号来表示环境特征,这样可以更全面的反映避障系统的周围信息,为机器人的路径规划做准备。
(3)模糊逻辑法方法是用某种模拟人类的思维习惯的模型系统地反映机器人避障系统中多传感器数据融合过程的不确定性,并通过模糊推理来完成数据融合,得到预期的效果。
(4)人工神经网络法是一种仿效生物神经系统的信息处理方法,是通过有教师或无师自学算法进行网络学习,一旦学习完成,该神经网络就能够根据以网络权矩阵和网络拓扑结构形式存储的特征信息,基于此神经网络得到了一种进行决策思维的模型结构,通过综合来自于系统各种不同传感器的信息,从中抽取出单一传感器无法提供的准确可靠信息,这是在有环境交互的情况下处理多传感器信息的一种十分有效的方法。
此方法应用到机器人避障系统多传感器信息处理中,主要通过传感器在操作现场获得环境信息,过滤和预处理模块对传感信息进行修正和数字化,经安全机制判断后作为相应神经网络融合处理器的输入源,采用知识数据库作为神经网络融合器的选型和知识来源的辅助决策工具,应用程序接收融合结果,采取相应的控制策略,并发送控制命令给机器人驱动设备。这样可以快速准确地获得尽可能多的实际操作现场的环境信息,从而有效地完成多传感器的信息处理。
机器人 智能机器人 传感器 二极管 电路 电容 红外 振荡器 电感 电压 神经网络 滤波器 仿真 电子 自动化 相关文章:
- 基于MSP430的自主式移动机器人设计与实现(06-12)
- 如何制作一个最简单的机器人(02-23)
- 机器人技术的新进展(02-23)
- CAN总线技术在工业码垛机器人控制系统中的应用研究(06-27)
- 制作机器人常用传感器盘点(02-23)
- 基于LabVIEW构建智能的移动机器人及无人驾驶车(10-27)