微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 机器人技术 > 传感器在多关节机器人系统实时避障中的应用

传感器在多关节机器人系统实时避障中的应用

时间:10-28 来源:互联网 点击:
一、引言

多关节机器人为了能在未知或时变环境下自主地工作.应具有感受作业环境和规划自身动作的能力。为此.必须提高机器人对当前感知环境的快速理解识别及实时避障的能力。实时避障是实现智能化机器人自主工作能力的关键技术.也是国内外智能机器人近期发展的一个热点.其显著特征是具有传感器信息反馈.可以实现很好的智能行为。本文主要针对基于传感器信息的多关节机器人实时避障方法方面的研究.详细介绍了传感器的选择和传感器信息融合技术。

二、传感器选择

机器人避障的关键问题之一是在运动过程中如何利用传感器对环境的感知。任何类型的传感器都有各自的优点和不足.选用时需要仔细考虑各种因素。

在机器人运动规划过程中传感器主要为系统提供两种信息:

(1)机器人附近障碍物的存在信息。
(2)障碍物与机器人间的距离。近几年.应用到机器人运动规划的传感器一般分为两大类:无源式传感器和有源式传感器。

1、无源式传感器

应用在避障中的无源式传感器包括触觉传感器和视觉传感器两种。

(1)触觉传感器

机器人触觉系统是模拟人的皮肤与物体接触的感觉功能.获取周围环境信息.用来达到避障目的.特别是在黑暗处或者因障碍物的影响导致无法通过视觉获取信息的条件下.使机器人具备触觉功能。

触觉传感器是一种测量自身敏感面与外界物体相互作用参数的装置.触觉传感器常常包含许多触觉敏感元.并以阵列的形式排列.通过这些触觉敏感元与物体相互接触产生触觉图象.并进行分析与处理.这种工作方式称为被动式触觉/但是.实际应用中.一方面由于触觉传感器的空间分辨率大大提高.

其工作平面尺寸比被识别物体要小得多;另一方面机器人控制中需要得到物体的三维信息。因此,在被动式触觉的基础上,将触觉传感器安装在机器人上,随着机器人的不断运动,传感器可得到被识别物体的三维触觉信息,通过进一步处理与识别,并反映给机器人控制器,这样可以使机器人获取周围环境信息,识别物体形状,确定物体空间位置等,从而达到智能控制和避障的目的。这种工作方式称为主动式触觉。在安装触觉传感器时,一般都安装在手爪、足、关节等主要的操作部位。

触觉传感器应用在多关节机器人避障系统中的主要缺陷是:信号滞后,很难实现实时避障,工作过程中机器人系统容易损坏。

(2)视觉传感器

视觉传感器获取的信息量要比其它传感器获取的信息量多得多,但目前还远未能使机器人视觉具有人类完全一样的功能,一般仅把视觉传感器的研制限于完成特殊作业所需要的功能。

视觉传感器把光学图像转换为电信号,即把入射到传感器光敏面上按空间分布的光强信息转换为按时序串行输出的电信号——视频信号,而该视频信号能再现入射的光辐射图像。固体视觉传感器主要有三大类型:一种是电荷耦合器件(CCD);第二种是MOS图像传感器,又称自扫描光电二极管列阵(SSPA);第三种是电荷注入器件(CID)。目前在机器人避障系统中应用较广的是CCD摄像机,它又可分为线阵和面阵两种.线阵CCD摄取的是一维图像,而面阵CCD可摄取二维平面图像。

视觉传感器摄取的图像经空间采样和模数转换后变成一个灰度矩阵,送入计算机存储器中,形成数字图像。为了从图像中获得期望的信息,需要利用计算机图像处理系统对数字图像进行各种处理,将得到的控制信号送给各执行机构,从而再现多关节机器人避障过程的控制。

这种传感器在避障中主要有三方面缺陷:一是受光线条件和工作范围限制;二是此类传感器驱动电路复杂,价格昂贵;三是实时性差。

2、有源式传感器

有源式传感器由于中间传递介质不同分为:超声波传感器、电容耦合式传感器、电涡流传感器、红外传感器。

(1)超声波传感器

超声波传感器是靠发射某种频率的声波信号,利用物体界面上超声反射,散射检测物体的存在与否。超声波在空气中传播时如果遇到其它媒介,则因两种媒质的声阻抗不同而产生反射。因此,向空气中的被测物体发射超声波,检测反射波并进行分析,从而获到障碍物的信息。

超声波传感器由于信息处理简单、快速并且价格低,被广泛用在机器人测距、定位及环境建模等任务中。但在多关节机器人实时避障系统中存在一定的局限性,主要表现在四个方面:

一是因为超声波的波长相对长一些,对于稍大的扁平的障碍物可以发生镜面反射,传感器由于接收不到反射信号,使此障碍物不能被检测到。

二是盲区较大,因为每个超声换能器既作超声发射器又作超声接收器,因此不能同时发射超声和接收超声。在发射超声后必须经过一段时间才能处理返回的声波。如果障碍物距离太近(<30左右),则传感器收不到返回的声波,所以该类传感器存在测量盲区。

三是表现在探测波束角过大,方向性差,往往只能获得目标的距离信息,不能准确地提供目标的边界信息,单一传感器的稳定性不理想等。在实际应用中,往往采用其它传感器来补偿,或采用多传感器融合技术提高检测精度等。

四是由于超声波受环境温度,湿度等条件的影响,以及超声固有的宽波束角,超声传感器在测距时,所测量的值与实际的值的误差较大。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top