微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 机器人技术 > 传感器在多关节机器人系统实时避障中的应用

传感器在多关节机器人系统实时避障中的应用

时间:10-28 来源:互联网 点击:
2、传感器信息处理

由于机器人避障系统中所用的传感器种类和数量较多,信息处理较复杂。应用在此系统的信号处理方法主要有小波分析法、神经网络法、遗传算法、免疫算法。

(1)小波分析法

小波变换的基本思想是用一族小波基函数去表示或逼近——信号,很好地解决了时间和频率分辨力的矛盾,适合于对时变信号进行局部分析。

小波变换作为一种新的信号处理方法,近几年,将小波分析应用在机器人避障系统实时采集传感器信号检测分析中,通过对传感器信号的多尺度分解,滤除被测传感器信号中混入的噪声成分,重构真实信号,这样可以有效提高机器人避障系统中采样数据的可靠性,进而可以提高避障系统的控制精度。另外它还有数据压缩功能,对此系统大量的传感信号进行压缩处理可以节省存储空间,提高运算速度。

(2)神经网络法

神经网络是一种不需要选取基函数系的非线性函数逼近方法。机器人避障系统利用神经网络的高度非线性描述能力,并利用这一能力对此系统的多传感器进行建模,利用BP算法(误差反向传播算法),可以对传感器输出信号进行滤波、除噪及传感器的信号识别,从而使传感器的输出信号更精确反映外部环境信息,为机器人的路径规划算法做准备。

这种方法的特点是:不需要机理方面的细节知识,避免了数学建模的不完备性;利用软件实现传感信号的处理,方便灵活,适用性强,免去了硬件电路。

(3)遗传算法

遗传算法是按照自然界“优胜劣汰,适者生存”法则提出的一种全局优化自适应概率搜索算法。遗传算法通过对当前群体施加选择、杂交、变异等一系列操作,产生出新一代的群体,并逐步使群体进化到最优解状态。

遗传算法被应用于机器人避障系统的传感信号处理中,首先在一个采样周期内将实际传感器信号均匀采样N次送入计算机,随机选择几组数据作为初始群体。然后循环进行选择、杂交、变异三种操作,直到达到给定的要求电压值为止。在机器人避障系统中,利用简单的放大电路和遗传算法软件可以在多传感信号的情况下精确还原传感信号,提高传感器信息处理中的测量精度。

(4)免疫算法

免疫算法是一种基于模拟生物体的计算方法,该算法模拟免疫系统中抗体-抗原的相互作用,通过系统对抗原(输入信号)的识别,抗体(标样信号)与抗原间亲和力的调整,以及抗体对抗原的消除来实现数字信号处理。

近几年来免疫算法也被应用于机器人避障系统的传感器信号处理中,该方法模拟免疫系统的作用机制,对此系统复杂、大量的传感器信号进行处理,可以得到重叠传感器信号中起决定作用的单组传感器信息,运行速度快,从而可以减少计算机处理传感器信息时间。

3、传感器故障诊断

传感器故障诊断的实施,能够保证诊断系统获取实时准确的信息,避免因错误信息造成的负效应,保证数据的正确性,因此传感器故障诊断是系统实时避障的重要保证。应用在机器人避障系统传感器故障诊断的方法主要有以下几个方面:

(1)模糊诊断方法

模糊诊断方法就是以模糊数学为理论基础,依据系统的传感器的模糊状态进行状态识别、推理并作出决策的一种故障诊断方法。

模糊故障诊断方法的优点是能够充分利用专家经验,考虑了故障状态及专家经验的模糊性,使得诊断结果更为合理,同时模糊诊断计算量相对较小,诊断速度快,实时性好,便于在计算机上应用,且准确率也较高。经常被国内外学者应用到机器人避障系统中,进行传感器输出结果的诊断。但模糊故障诊断方法也有其不完善的方面,如隶属函数的选取、各个诊断规则的运用,至今并无同一原则,常依具体问题而定。

(2)离散小波网络法

离散小波网络法是利用小波网络来诊断避障系统中传感器对象,当传感器对象没有突变时,小波网络的输出与诊断避障系统中传感器对象的输出差值较小,当传感器有突变时,小波网络的输出与诊断避障系统中传感器对象的输出差值较大,据此可利用方差检测出故障。该方法灵活度高,克服噪声能力强,对输入信号要求低,不需要对象的数学模型。缺点:在大尺度下,由于滤波器时域宽度较大,检测时会有一定的延时。

(3)人工神经网络诊断法

人工神经网络法近年来被应用于机器人避障系统中的传感器故障诊断领域。人工神经网络是一种并行处理机制的网络,且它可以通过学习而获得外界知识,知识分布存储各个神经元之间连接权值上,它可以完成输入模式到输出模式的复杂映射,具有容错能力强和运行速度快的特点。

采用神经网络法进行机器人避障系统的故障诊断的方法是①选择系统中关键传感器输出作为神经网络的输入变量,并规定网络的输出变量值;②选择合适类型和结构的神经网络;③根据所选择的输入输出信号的历史数据,离线对网络进行训练,获得网络的权值或阀值;④在线将前面选择的输入输出数据作用于网络,网络输出便可给出诊断结果。

该方法优点是不需要准确的数学模型,可以直接用过程数据来解决机器人避障系统故障诊断问题。但是此方法还存在一些问题,如网络结构如何选取等。此外,在诊断过程中,常常自学习,自诊断,因此如何将无导师训练算法引入到传感器故障诊断领域,也是一直探讨的方向。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top