一篇文章读懂读透FPGA AXI4 总线协议
新一代FPGA中采用的基本都是AXI4总线协议,例如与slaver侧的DMA或DDR等通信。这篇讲AXI4的文章感觉讲的很清楚。
0.绪论AXI是高级扩展接口,在AMBA3.0中提出,AMBA4.0将其修改升级为AXI4.0。AMBA4.0 包括AXI4.0、AXI4.0-lite、ACE4.0、AXI4.0-stream
AXI4.0-lite是AXI的简化版本,ACE4.0 是AXI缓存一致性扩展接口,AXI4.0-stream是ARM公司和Xilinx公司一起提出,主要用在FPGA进行以数据为主导的大量数据的传输应用。
1.简介
1.1 关于AXI协议
AMBA AXI协议支持支持高性能、高频率系统设计。
关键特点:
-
适合高带宽低延时设计
-
无需复杂的桥就能实现高频操作
-
能满足大部分器件的接口要求
-
适合高初始延时的存储控制器
-
提供互联架构的灵活性与独立性
-
向下兼容已有的AHB和APB接口
-
分离的地址/控制、数据相位
-
使用字节线来支持非对齐的数据传输
-
使用基于burst的传输,只需传输首地址
-
分离的读、写数据通道,能提供低功耗DMA
-
支持多种寻址方式
-
支持乱序传输
-
允许容易的添加寄存器级来进行时序收敛
1.2 AXI架构
AXI协议是基于burst的传输,并且定义了以下5个独立的传输通道:读地址通道、读数据通道、写地址通道、写数据通道、写响应通道。
地址通道携带控制消息用于描述被传输的数据属性,数据传输使用写通道来实现"主"到"从"的传输,"从"使用写响应通道来完成一次写传输;读通道用来实现数据从"从"到"主"的传输。
图 1-1 读架构
图 1-2 写架构
AXI是基于VALID/READY的握手机制数据传输协议,传输源端使用VALID表明地址/控制信号、数据是有效的,目的端使用READY表明自己能够接受信息。
读/写地址通道:读、写传输每个都有自己的地址通道,对应的地址通道承载着对应传输的地址控制信息。
读数据通道:读数据通道承载着读数据和读响应信号包括数据总线(8/16/32/64/128/256/512/1024bit)和指示读传输完成的读响应信号。
写数据通道:写数据通道的数据信息被认为是缓冲(buffered)了的,"主"无需等待"从"对上次写传输的确认即可发起一次新的写传输。写通道包括数据总线(8/16…1024bit)和字节线(用于指示8bit 数据信号的有效性)。
写响应通道:"从"使用写响应通道对写传输进行响应。所有的写传输需要写响应通道的完成信号。
图 1-3 接口与互联
AXI协议提供单一的接口定义,能用在下述三种接口之间:master/interconnect、slave/interconnect、master/slave。
可以使用以下几种典型的系统拓扑架构:
-
共享地址与数据总线
-
共享地址总线,多数据总线
-
multilayer多层,多地址总线,多数据总线
在大多数系统中,地址通道的带宽要求没有数据通道高,因此可以使用共享地址总线,多数据总线结构来对系统性能和互联复杂度进行平衡。
寄存器片(Register Slices):
每个AXI通道使用单一方向传输信息,并且各个通道直接没有任何固定关系。因此可以可以在任何通道任何点插入寄存器片,当然这会导致额外的周期延迟。
使用寄存器片可以实现周期延迟(cycles of latency)和最大操作频率的折中;使用寄存器片可以分割低速外设的长路径。
2.信号描述
表 2-1 全局信号
信号名 | 源 | 描述 |
ACLK | 时钟源 | 全局时钟信号 |
ARESETn | 复位源 | 全局复位信号,低有效 |
表 2-2 写地址通道信号
信号名 | 源 | 描述 |
AWID | 主机 | 写地址ID,用来标志一组写信号 |
AWADDR | 主机 | 写地址,给出一次写突发传输的写地址 |
AWLEN | 主机 | 突发长度,给出突发传输的次数 |
AWSIZE | 主机 | 突发大小,给出每次突发传输的字节数 |
AWBURST | 主机 | 突发类型 |
AWLOCK | 主机 | 总线锁信号,可提供操作的原子性 |
AWCACHE | 主机 | 内存类型,表明一次传输是怎样通过系统的 |
AWPROT | 主机 | 保护类型,表明一次传输的特权级及安全等级 |
AWQOS | 主机 | 质量服务QoS |
AWREGION | 主机 | 区域标志,能实现单一物理接口对应的多个逻辑接口 |
AWUSER | 主机 | 用户自定义信号 |
AWVALID | 主机 | 有效信号,表明此通道的地址控制信号有效 |
AWREADY | 从机 | 表明"从"可以接收地址和对应的控制信号 |
表 2-3 写数据通道信号
信号名 | 源 | 描述 |
WID | 主机 | 一次写传 |
- 用大电流LDO为FPGA供电需要低噪声、低压差和快速瞬态响应(08-17)
- 基于FPGA 的谐波电压源离散域建模与仿真(01-30)
- 基于FPGA的VRLA蓄电池测试系统设计(06-08)
- 降低从中间总线电压直接为低电压处理器和FPGA供电的风险(10-12)
- FPGA和功能强大的DSP的运动控制卡设计(03-27)
- DE0-Nano-SoC 套件 / Atlas-SoC 套件(10-30)