使用ADSP-CM408F ADC控制器的电机控制反馈采样时序
简介
本应用笔记介绍ADSP-CM408F模数转换器控制器(ADCC)模块的主要特性,重点讨论该产品在高性能电机控制应用的电流反馈系统中的相关性与可用性。
本应用笔记的目的是为了强调模数转换器(DAC)模块的关键功能,并提供针对电机控制应用的配置指南。本文提供演示ADI ADCC驱动器的代码示例。
有关此ADCC的所有功能、配置寄存器和应用程序接口(API)的更多详细信息,请参阅ADSP-CM402F/ADSP-CM403F/ADSP-CM407F/ADSP-CM408F产品页面和采用ARM Cortex-M4和16位ADC开发产品的ADSP-CM40x混合信号控制处理器的产品页面上提供的《采用ARM Cortex-M4的ADSP-CM40x混合信号控制处理器硬件参考指南》。
虽然本应用笔记重点讨论电流反馈,类似的配置和应用原理同样适用于其他信号的反馈与测量。
同样,虽然本应用笔记重点讨论ADSP-CM408F,但原理在本质上同样适用于ADSP-CM402F/ ADSP-CM403F/ADSP-CM407F/ADSP-CM408F系列的其他产品。
电流反馈系统概述
电机控制应用中的电流反馈示例如图1所示。该配置常用于高性能电机驱动,并针对电机相位绕组电流采样,而非对逆变器低端相位引脚采样。中高电平时,电流传感器或变压器(CT0和CT1)必须用于电流测量路径,因为阻性分流器尺寸过大而低效。
在图1的配置中,处理器位于安全的隔离栅低压侧,而信号隔离通常为CT0和CT1所固有,且微处理器的脉冲宽度调制PWM输出和栅极驱动器之间还存在数字隔离。
通常需要在电流传感器输出和ADC输入之间进行一些信号调理,以便实现范围匹配和高频噪声滤波。随后将调理的电流测量信号施加于ADC输入,用来采样和转换。对每个ADC输入进行一次绕组电流测量将使能电流测量的同步采样以获得更高的控制环路精度,从而增强性能。另外,还可在硬件内直接配置采样时间与PWM sync脉冲的同步。
图1. 电机控制中ADSP-CM408F ADC的电流反馈
这些特性可使能PWM周期中相位电流测量点的精密时序。将这些测量时刻与零矢量的中间点或PWM周期的中间点对齐,确保电流采样电平等效于忽略开关纹波的瞬时平均电流。
图2中显示了零矢量中点和PWM周期中点处的同步U相位和V相位采样。
图2. 平均电流采样图解
完成数据转换后,便可将其通过直接存储器访问(DMA)传输至控制器静态随机存取存储器(SRAM),完成传输后会生成一个中断。在内核模式下,通过存储器映射寄存器,还可实现直接ADC状态和数据读取,但这种方法需消耗更多的处理器开销。
通常还会采样其他模拟信号,例如直流总线电压、隔离式栅极双极性晶体管(IGBT)温度和电机位置正弦与余弦输出。虽然本应用笔记重点讨论电流反馈,但很多信息也与系统中的其他测量参数有关。
ADC模块概述
该ADC采用双通道、16位、高速、低功耗、逐次逼近型寄存器(SAR)设计,精度高达14位。
输入多路复用器最多支持连接两个独立受控ADC的26个模拟输入源组合(每个ADC的12路模拟输入加上1路DAC回送输入),任意时刻都对两个通道同步采样。 ADC转换时间快达380 ns。单端模拟输入所需的电压输入范围为0 V至2.5 V。
多路复用器和ADC之间提供片内缓冲器,无需使用额外的外部信号调理ADSP-CM408F。此外,每个ADC都有一个片内2.5 V基准电压源,当优先选择外部基准电压源时可将其过驱(通过ADCC_CFG寄存器选择该选项)。
ADSP-CM408F中的总模拟子系统的图形概述如图3所示。ADSP-CM408F采用多芯片系统级封装(SiP),而ADC硅片制造工艺与处理器硅片工艺有所不同,如图3所示。
ADCC负责ADC中与处理器的时序同步,并管理DMA,将采样数据传输到SRAM。
图3. ADSP-CM408F模拟子系统
电流反馈调整
若要最大限度地正确利用ADC的能力,正确调整反馈信号非常重要。信号通过反馈路径处理,如图5所示。双极性相位绕组电流IW通过电流传感器(或变压器)和信号调理电路的组合功能转换为ADC输入端的单极性电压。
电流传感器的传递函数由下式表示:
其中:
为输出电压;是传感器的线性增益系数;是传感器的零电流失调电压。
KCT在不同传感器类型的某些电流水平下表现出非线性,且为了获得更佳的精度,应当与IW成函数关系,即KCT (IW)。之后,ADC输入电压可表示为:
其中,KSIG是信号调理电路的低频增益。
该单极性电压转换为16位无符号整数,并由DMA传输至处理器存储器,然后发出中断,提醒控制程序新数据样本可用。ADC理想化的传递函数如下所示:
其中:
NIW是ADC数字输出字。
KADC表示ADC的线性增益,等于
根据输入电压范围划分的ADC分辨率,如上所示。
ADC输出会产生一些失调;而在软件内进行一些失调补偿(NADC_OFFSET)通常是一个好办法,可将ADC自身的所有失调以及传感器和信号调理电路产生的所有残余失调从ADC输出中去除。该值可在零电流周期(如系统启动或禁用驱动输出)中动态更新。
最后,电流传感器零电流失调电压NCT_OFFSET的数字表示从ADC输出信号中去除,使带符号值IW(与实际相位绕组电流有关)的表达式为:
其中:
这个带符号的16位值可转换为浮点值,或直接使用,具体取决于控制器实现方案。若要最大限度地利用ADC的全范围,则系统中的正峰值受控电流必须与ADC输入电压2.5 V相对应,而负峰值受控电流与ADC输入0 V相对应。
该情况的一个示例如图4所示。该图显示了典型电流波形和相关的各种零电平、峰值电平以及标称电平,图4显示的电流电平将转换为通过信号测量系统传播(如图5所示)的比例量(参见表1)。
- 电动 / 混合电动汽车电池管理系统的可靠性(11-09)
- 低成本、8通道、同步采样数据采集系统设计(03-11)
- 用于高速 ADC 的串行接口(11-07)
- SAR ADC 掌控世界(03-05)
- 低功耗 ADC:凌力尔特新方法降低整个信号链路的功耗(11-22)
- 怎样采用多种单端信号驱动低功率、1Msps、±2.5V 差分输入、16 位 ADC(03-07)