变频器电磁兼容与干扰抑制探讨
1 引言
变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。在现代工业中,变频器的使用越来越广泛。目前几乎所有变频器都采用pwm控制技术。
目前,国内外对电磁兼容问题非常重视。pwm变频电机驱动系统所产生的电磁干扰也越来越受到人们的重视。为了达到电磁兼容标准的要求,正确的设计、合理的运用抑制手段,使系统emi发射强度减小到emc标准限值以下,使电气设备和系统实现电磁兼容。
2 pwm变频器的传导干扰机理
所谓传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元器件耦合至被骚扰设备。传导耦合又可以分为直接传导耦合和公共阻抗传导耦合。直接传导耦合是指噪声直接通过导线、金属体、电阻、电容、电感和变压器等实际元器件耦合到被骚扰设备。公共阻抗传导耦合是指噪声通过印制板电路和机壳接地线、设备的公共安全接地线以及接地网络中的共地阻抗产生公共的地阻抗耦合;噪声通过交流供电电源及直流供电电源的公共电源阻抗时,产生公共电源阻抗耦合。
功率开关器件的开关运行状态引起系统中各组件间复杂的相互耦合作用就会形成传导干扰。传导干扰考虑的最高频率为30mhz,在真空中相应的电磁波波长λ为10m,因而对于尺寸小于λ/2π的电力电子装置来讲,属于近场范围,可用集总参数电路进行电磁干扰分析。可以根据传导干扰传播耦合通道的不同将系统输入/输出导线上的骚扰区分为共模干扰和差模干扰两部分,一般认为共模干扰主要是由于系统变流器中的功率半导体开关器件开关动作引起的dv/dt经系统对地杂散电容耦合而传播,一个极的电压变化都会通过容性耦合到另一个极产生位移电流。通过寄生电容产生的电流并不需要直接的电气连接,甚至可以没有地。其大小可以表示为:i=cdu/dt ,式中c为电池干扰源和敏感设备之间的等效耦合电容。
差模干扰则主要是由于功率半导体开关器件开关引起的di/dt经输入输出线间的导体传播。当然,这些只是传导干扰产生的最本质原因,而不同的电机系统其传导干扰的具体成因不同,另外,共模干扰和差干骚扰是可以相互转化的,并不是绝对分开的。比如图1所示为共模电流传输通道的不平衡造成非本质差模噪声的电路图。
图1 非本质差模噪声产生机理
如图2为pwm变频驱动电机系统的电磁干扰电流流通路径图,包括共模干扰和差模干扰。在pwm变频器中,为保证开关管工作时不会因过热而失效,都要对其安装散热器,并且为防止短路,开关管的金属外壳与散热器之间是通过导热绝缘介质相隔离的,同时散热器又是通过机箱接地的,于是,在变频器与散热器之间就形成了一个较大的寄生电容。当逆变器正常工作时,随着每相桥臂上、下开关管的轮流开通,桥臂中点电位会随之发生准阶跃变化。如果从emi角度看该现象,那么三个桥臂所输出的电压就是三个emi干扰源,而且每个开关动作时都会对功率开关器件与散热片之间寄生电容进行充、放电,形成共模emi电流。
图2 pwm变频驱动电机系统的电磁干扰电流流通路径图
3 pwm变频器传导干扰的抑制措施
由于电磁干扰产生必须具备三要素:电磁干扰源、电磁干扰传播途径和敏感设备,所以对于抑制pwm变频驱动电机系统的传导干扰也必须从三要素入手,即降低干扰源的强度、切断传播途径和提高敏感设备的抗扰度。
3.1 基于减小干扰源发射强度的emi抑制技术
从降低干扰源的强度来看,归纳起来有三种具有代表性的方法:改变电路拓扑、改进控制策略和优化驱动电路。
(1)改变电路拓扑
改进电路拓扑的思路主要是通过对称结构来消除变换器输出的共模电压,并且由于开关器件上电压变化率减半而使得装置输入侧传导干扰发射水平降低。以a.l.julian为首的学者根据"电路平衡"原理提出了一种用于消除三相功率变换器输出共模电压的三相四桥臂方案[9-11],其实验电路见图3所示。该方法基本思想是采用一个外加"辅助相"使三相系统电路的对地电位对称,并通过调整开关顺序,使四桥臂输出相电压之和尽可能为零,实现共模电压完全为零。与传统三桥臂功率变换器相比,它的共模emi可以减小约50%。
图3 带二阶滤波器的三相四桥臂功率变
- 以创新的IGBT技术、合理的器件选型和有效的系统手段优化变频器设计(01-09)
- 台达变频器在数控机床的应用(06-29)
- 用薄膜电容器替代铝电解电容器的分析与实践(04-20)
- 关于变频器输出端连接开关的探讨(06-20)
- 基于台达变频器的EPS解决方案(07-29)
- 高性能V/f控制在中压变频器中的实现(07-08)