微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于FPGA的实时金融指数行情并行计算

基于FPGA的实时金融指数行情并行计算

时间:06-04 来源:互联网 点击:

一、立项依据

(1)面临的问题与挑战

中国金融市场已经是全球最大的金融市场之一,随着市场规模的不断扩大,金融市场的功能发挥日益明显,服务相关产业和国民经济的能力不断提高。金融是现代经济的核心,金融现代化、市场化和国际化程度不断提高,与社会主义市场经济体制相适应的金融体制初步建立,并在优化资源配置、支持经济改革、促进经济持续发展和维护社会经济稳定方面发挥了重要作用。

金融交易系统(例如股票交易系统)具有交易时间相对集中、交易指令和数据密集的特点,对交易系统处理速度具有很高的要求。近年来,资本市场的快速发展和算法交易技术(尤其是高频交易)在全世界范围内的应用,使得交易所在低交易延时领域面临着巨大的技术挑战。

交易所对于交易系统延时测量监控需求也越来越迫切,同时对于大规模数据密集型计算的实时性要求也越来越高。对于交易系统及环节的高精度延时测量,达到近实时的分析性能基本可以准确快速的监测股票交易系统性能和状态,但对于大规模实时交易数据分析,则需要达到更快的处理速度,实时性要求更高,直接关系到交易系统的服务质量(QoS)。传统的软件技术或以软件为核心的软硬件加速技术难以满足微秒级实时分析和实时响应的要求,采用FPGA专用硬件结构实现大规模数据密集型计算的并行加速称为提高交易系统服务质量的迫切需求。

金融交易所通过加速应用软件来获得市场竞争优势.对金融应用软件加速,金融交易所能够比竞争对手更快更好地完成交易,更少出错,大幅度提高收益.要提升性能首先得提高处理能力,全面提升性能 要求处理能力至少提高一个数量级。中国股票交易系统的现状,本项目将围绕股票交易的规则和方法,以上证50指数的数据分析为典型应用场景,通过专用硬件平台实现大规模实时并行数据处理,根据特定计算模型实现快速进行股票信息接受、数据处理、指数计算、行情更新等功能。拟采用FPGA为核心器件,研究交易数据的并行调度策略和计算模型,将相应速度提升3-4个数量级,并给出FPGA随股票数据数量、计算模型复杂度提高的并行加速性能分析。

(2)与系统建设长期规划的关系

本项目的研究成果除股票交易的并行加速模型与系统设计外,还包括对股票交易系统其它业务处理的硬件加速论证方案,根据计算任务特点不同,给出合理的硬件加速平台建设方案,股票指数实时更新只是其中的一个应用场景。

本项研究成果可以集成或独立应用与股票交易业务应用,具有理论研究价值和实际应用推广价值,同时将为股票交易所下一代交易系统核心撮合引擎在硬件并行加速方面的技术革新奠定基础。

二、国内外研究现状

在网络以及网络数据包处理相关问题上,链路带宽的剧增给高速网络数据包处理带来了极大的挑战。传统的纯软件网络数据包处理在性能上已不能满足需要。当前网络处理器、多核芯片等针对高性能网络数据包处理提供了硬件加速技术,对多数网络应用提供了高性能实现方法。 在对数据处理时延、 吞吐量、 丢包率等性能指标有更高要求的应用场合,还需要专用的加速硬件。目前基于现场可编程逻辑门阵列(FPGA)的通用高速网络数据包处理硬件加速架构对数据采集通路进行硬件加速,实现了高速链路数据报文的线速采集,通过专用硬件进行数据包转发和流量控制,针对后端多核服务器的并行处理进行优化,实现了控制和分析平面的高性能处理。该架构在流量采集、高精度时钟同步、高速包分类和流量控制等方面,充分卸载了服务器的处理负荷,能有效地提高应用系统的性能.

针对金融网络数据处理的技术研究而言,国外已经预言或实现了很多相关硬件加速和并行计算的FPGA实现,其中Altera公司2008年面向蒙特卡罗算法(QMC)的FPGA加速模型建立,对价格衍生证券的实时精确估计判断做出了很大的促进作用。此外,2009年英国帝国理工学院和英国金融加速解决方案供应商Celoxica合作,提出实现了一种叫“低延迟交易数据反馈计算模型”。针对现在越来越大的交易市场的变化数据(甚至超过gigabit),他们为投资者提供了网络传输数据分析的FPGA加速处理方案,利用FGPA的可配置特点,可选择地实现对交易数据的压缩,过滤,筛选。其性能优越,每秒最多处理高达3.5M条信息,处理延迟也控制在微秒量级上。不但激活了投资者的投资热情,同时也极大促进了金融市场流动性。

  1. FPGA的特点与应用

FPGA是20世纪80年代中期出现的一种新型的现场可编程逻辑器件,用户可以自己编写程序配置FPGA,从而实现预定的逻辑功能。因为FPGA具有大规模数据并行处理能力、开发周期短、可靠性

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top