基于FPGA的步进电机正弦波细分驱动器设计
时间:08-02
来源:互联网
点击:
1 引言
步进电机是一种将电脉冲信号转换成相应的角位移(或线位移)的机电元件,具有结构简单坚固耐用工作可靠的优点因此广泛应用于工业控制领域。由于脉冲的不连续性又使步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高及驱动系统可靠性差等,严重制约了其应用范围。步进电机的细分控制有效地解决了这一问题,但是传统的步进电机驱动系统大多数采用的是用单片机作为控制芯片,外加分立的数字逻辑电路和模拟电路构成。受单片机工作频率的限制,细分数不是很高,因此驱动器的控制精度较低,控制性能不是很理想。随着高性能数字信号处理器DSP的出现,以DSP为控制核心,以软件方式实现电机控制一度成为研究的热点。近年来随着可编程逻辑器件的飞速发展,使得可编程逻辑器件功能越来越强大从而促使高集成化高精度驱动器的出现。因此本文提出了一种基于SOPC片上可编程的全数字化步进电机控制系统,本系统是以FPGA为核心控制器件,将驱动逻辑功能模块和控制器成功地集成在FPGA上实现,充分发挥了硬件逻辑电路对数字信号高速的并行处理能力,可以使步进电机绕组电流细分达到4096,且细分数可以自动调节,极大地提高了控制精度和驱动器的集成度,减小了驱动器体积。
2 步进电机细分驱动原理
步进电机的细分控制本质上是对步进电机励磁绕组中的电流进行控制,在普通驱动方式下,驱动电路只是通过对电动机绕组激磁电流的“开”和“关”,使步进电动机转子以其本身的步距角分步旋转。步进电动机靠定子、转子磁极间的电磁力来进行工作,当它处于“双拍”状态工作时,其定位位置是正好位于两通电磁极的中间,即依靠两通电磁极电磁吸引力的平衡而获得的。由此可以推论:如果能够进一步仔细地控制两磁极电磁吸引力的大小,使转子磁极获得更多种由于两相定子磁极的电磁吸引力差异而形成的平衡定位位置。步进电机细分驱动方式就是应用了这一原理,在细分驱动时,细分控制器通过控制各相激磁绕组电流的逐步增大及逐步减小,让转子处于多个磁力平衡状态使电机内部的合成磁场为均匀的圆形旋转磁场,实现步距角变小、电动机的旋转得到细化的目的。合成的磁场矢量的幅值决定了电机旋转力矩的大小,相邻两个合成磁场矢量的夹角大小决定了该步距角的大小。对于三相步进电机而言,向A、B、C绕组分别通以相位相差2/3π,而幅值相同的正弦波电流(图1),则合成的电流矢量在空间做幅值恒定的旋转运动,其对应的合成磁场矢量也作相应的旋转从而形成旋转力矩(图2)。
A、B、C三相瞬时电流值如式(1)、(2)、(3)所示。
(1)
(2)
(3)
图1 步进电机正弦细分三相绕组电流波形图
图2旋转力矩图
细分驱动方式下,由于步距角小,步进电机的控制精度明显提高,同时这种驱动方式又有效抑制低速运行中产生的噪声和振荡现象。
3控制器总体设计方案
步进电机三相绕组的电流是正弦阶梯电流,通过改变给定电流的每一次变化的阶梯数可以实现可变细分功能。驱动器的任务就是控制绕组的电流,使之按正弦阶梯波的规律变化。每给一个步进脉冲,A、B、C三相绕组的电流沿正弦阶梯波前进一步,电机转动一个步距角。步进电动机驱动主回路图如图3所示IA、IB为两个霍尔元件。图中6个IGBT集成在电源控制模块IPM内。
图3步进电动机驱动主回路图
步进电机控制系统框图如图4所示。采用FPGA作为主控制芯片,将控制器与驱动器的数字电路部分集成在一片FPGA上实现。为了控制绕组电流,在设计中引入电流跟踪型闭环反馈,反馈电流与给定的正弦电流(离散的正弦表)经过改进的比例积分PI调节后进行SPWM调制,输出6路PWM波,来控制驱动电路三个桥臂上的6个IGBT开通关断。如果忽略死区时间控制每个桥臂的上下半桥的两路PWM波互补即上半桥PWM波为高/低电平时,下半桥PWM波为低/高电平。系统采用14位宽度200MHz计数器产生PWM载波,载波频率12.2KHz,电流数据全部采用14位精度进行离散化。200MHz时钟由50MHz时钟经PLL倍频产生。FPGA输出的PWM波经功率模块放大后,控制步进电机运行。步进电机运行状态(转速和转向)通过LED指示。步进电机转速是由查表速度决定的,CP是用来决定查表频率,在细分等级一定的情况下CP速度越高电机转速越快。如果电机在高细分下高速旋转则CP脉冲频率就会很高,导致PWM脉宽过小,使功率模块IGBT控制桥臂频繁开关,其结果是开关损耗大为增加,功率模块过热。而高细分在步进电机高速旋转时其优势并不明显,所以在不影响电机运行精度的情况下,系统根据转速对细分精度在4096、2048、1024、512、256、128、64、32之间自动调节,使电机更加平稳可靠的运行。
图4 控制系统框图
步进电机是一种将电脉冲信号转换成相应的角位移(或线位移)的机电元件,具有结构简单坚固耐用工作可靠的优点因此广泛应用于工业控制领域。由于脉冲的不连续性又使步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高及驱动系统可靠性差等,严重制约了其应用范围。步进电机的细分控制有效地解决了这一问题,但是传统的步进电机驱动系统大多数采用的是用单片机作为控制芯片,外加分立的数字逻辑电路和模拟电路构成。受单片机工作频率的限制,细分数不是很高,因此驱动器的控制精度较低,控制性能不是很理想。随着高性能数字信号处理器DSP的出现,以DSP为控制核心,以软件方式实现电机控制一度成为研究的热点。近年来随着可编程逻辑器件的飞速发展,使得可编程逻辑器件功能越来越强大从而促使高集成化高精度驱动器的出现。因此本文提出了一种基于SOPC片上可编程的全数字化步进电机控制系统,本系统是以FPGA为核心控制器件,将驱动逻辑功能模块和控制器成功地集成在FPGA上实现,充分发挥了硬件逻辑电路对数字信号高速的并行处理能力,可以使步进电机绕组电流细分达到4096,且细分数可以自动调节,极大地提高了控制精度和驱动器的集成度,减小了驱动器体积。
2 步进电机细分驱动原理
步进电机的细分控制本质上是对步进电机励磁绕组中的电流进行控制,在普通驱动方式下,驱动电路只是通过对电动机绕组激磁电流的“开”和“关”,使步进电动机转子以其本身的步距角分步旋转。步进电动机靠定子、转子磁极间的电磁力来进行工作,当它处于“双拍”状态工作时,其定位位置是正好位于两通电磁极的中间,即依靠两通电磁极电磁吸引力的平衡而获得的。由此可以推论:如果能够进一步仔细地控制两磁极电磁吸引力的大小,使转子磁极获得更多种由于两相定子磁极的电磁吸引力差异而形成的平衡定位位置。步进电机细分驱动方式就是应用了这一原理,在细分驱动时,细分控制器通过控制各相激磁绕组电流的逐步增大及逐步减小,让转子处于多个磁力平衡状态使电机内部的合成磁场为均匀的圆形旋转磁场,实现步距角变小、电动机的旋转得到细化的目的。合成的磁场矢量的幅值决定了电机旋转力矩的大小,相邻两个合成磁场矢量的夹角大小决定了该步距角的大小。对于三相步进电机而言,向A、B、C绕组分别通以相位相差2/3π,而幅值相同的正弦波电流(图1),则合成的电流矢量在空间做幅值恒定的旋转运动,其对应的合成磁场矢量也作相应的旋转从而形成旋转力矩(图2)。
A、B、C三相瞬时电流值如式(1)、(2)、(3)所示。
(1)
(2)
(3)
图1 步进电机正弦细分三相绕组电流波形图
图2旋转力矩图
细分驱动方式下,由于步距角小,步进电机的控制精度明显提高,同时这种驱动方式又有效抑制低速运行中产生的噪声和振荡现象。
3控制器总体设计方案
步进电机三相绕组的电流是正弦阶梯电流,通过改变给定电流的每一次变化的阶梯数可以实现可变细分功能。驱动器的任务就是控制绕组的电流,使之按正弦阶梯波的规律变化。每给一个步进脉冲,A、B、C三相绕组的电流沿正弦阶梯波前进一步,电机转动一个步距角。步进电动机驱动主回路图如图3所示IA、IB为两个霍尔元件。图中6个IGBT集成在电源控制模块IPM内。
图3步进电动机驱动主回路图
步进电机控制系统框图如图4所示。采用FPGA作为主控制芯片,将控制器与驱动器的数字电路部分集成在一片FPGA上实现。为了控制绕组电流,在设计中引入电流跟踪型闭环反馈,反馈电流与给定的正弦电流(离散的正弦表)经过改进的比例积分PI调节后进行SPWM调制,输出6路PWM波,来控制驱动电路三个桥臂上的6个IGBT开通关断。如果忽略死区时间控制每个桥臂的上下半桥的两路PWM波互补即上半桥PWM波为高/低电平时,下半桥PWM波为低/高电平。系统采用14位宽度200MHz计数器产生PWM载波,载波频率12.2KHz,电流数据全部采用14位精度进行离散化。200MHz时钟由50MHz时钟经PLL倍频产生。FPGA输出的PWM波经功率模块放大后,控制步进电机运行。步进电机运行状态(转速和转向)通过LED指示。步进电机转速是由查表速度决定的,CP是用来决定查表频率,在细分等级一定的情况下CP速度越高电机转速越快。如果电机在高细分下高速旋转则CP脉冲频率就会很高,导致PWM脉宽过小,使功率模块IGBT控制桥臂频繁开关,其结果是开关损耗大为增加,功率模块过热。而高细分在步进电机高速旋转时其优势并不明显,所以在不影响电机运行精度的情况下,系统根据转速对细分精度在4096、2048、1024、512、256、128、64、32之间自动调节,使电机更加平稳可靠的运行。
图4 控制系统框图
步进电机 单片机 电路 模拟电路 DSP FPGA 电流 电动机 IGBT PWM LED PCB 二极管 电阻 电压 比较器 仿真 Altera 相关文章:
- 基于FPGA实现的短波发射机自动调谐系统的设计(07-27)
- 用单片机和CPLD实现步进电机的控制(08-06)
- FPGA在短波发射机自动调谐系统中的应用(08-21)
- 运动控制和混合信号FPGA(10-13)
- 装入CPLD/FPGA的步进电机运动控制器与驱动器(11-07)
- 利用可编程逻辑实现高性能的罪犯抓捕系统(11-08)