基于FPGA的一种高速图形帧存设计
时间:06-28
来源:互联网
点击:
帧存是图形处理器与显示设备之间的数据通道,所有要显示的图形数据首先是存放在帧存之中,然后才送出去显示的,因此帧存的设计是图形显示系统设计的一个关键。传统上,可以用来设计帧存的存储器件有多种,如DRAM、VRAM、SDRAM及SRAM等。DRAM、VRAM及SDRAM属于动态存储器,容量大、价格便宜,但速度比SRAM慢,而且在使用中需要定时刷新。当图形处理器没有外部专用刷新接口时,就需要设计刷新电路,这给系统设计带来不便。SRAM器件高速且接口简单,但是价格较贵、容量小。近年来,随着SRAM容量的不断增大和价格的不断下降,在一些需要高速实时显示的图形显示系统中,用高速SRAM设计图形帧存越来越普遍。本文介绍已在项目中实际应用的采用双SRAM帧存交替切换的高速帧存设计方法。详细介绍应用FPGA设计帧存控制器,实现帧存的交替、上电清屏及借鉴电影遮光板原理实现单帧双扫描的方法。
1 图形显示系统简介
图1是某专用图形显示系统结构框图,图形显示系统采用DSP+FPGA构架。图形处理器采用AD公司的ADSP21061芯片;AMLCD采用Korry公司的KDM710全彩色液晶显示模块,该模块为5×5英寸、600×600分辨率全彩色液晶显示模块,24位数字RGB输入;两个帧存A和B采用IDT公司的71V424L10V高速异步静态RAM(读写速度为10ns)。系统采用双帧存轮流操作方法:当DSP向其中一个帧存写像素时,由FPGA构成的帧存控制器将另一个帧存中的像素顺序读出,送给AMLCD显示;反之亦然。图形显示系统通过IDT公司的71V04双口RAM接收主机的显示信息。图1中的帧存控制器和视频控制器由Xilinx公司的SpartanII芯片XC2S50实现。 视频控制器产生KDM710显示模块所需的一些时序控制信号:行同步信号/HSYNC、场同步信号/VSYNC、数据使能信号DATA_EN和像素时钟信号DCLK等。帧存控制器产生24位RGB颜色数据信号,该RGB数据信号与视频控制器中的时序控制信号相配合,在液晶显示屏上显示出稳定的图形。有关视频控制器的设计方法参见文献[2]。
2 帧存控制器设计
2.1总线切换模块
图2为帧存控制器总线切换模块框图。地址总线通过多路选择器(MUX)切换,所有数据总线通过三态门挂在SRAM的数据总线上。帧存SRAM的数据总线上挂着三路数据:一路是DSP的数据总线数据;一路是FPGA的数据总线数据;还有一路是系统上电清屏用的背景寄存器数据?系统刚上电时,帧存之中存放的是随机数,画面显示的将是随机画面,需要将背景数据送入两个帧存?。总线的切换由体切换信号Sel和上电清屏信号Clear控制。帧存控制器在上电时,通过上电清屏时序将两块帧存中写入背景颜色数据。在上电清屏过程中,Clear信号为高。当Clear为高时,两个地址总线选择器都选择FPGA总线,即FPGA的地址总线指向两个帧存,两个帧存的数据总线全指向背景数据寄存器,即三态门1、2、3和4关闭,而三态门5和6打开。在上电清屏时序完成之后,帧存总线的控制由体选择信号Sel控制。当DSP对帧存A进行写操作时,FPGA所产生的总线对帧存B进行读操作;反之亦然。如图2所示,当Sel为高时,DSP地址总线选择帧存A,三态门1打开,三态门3、5关闭;FPGA地址总线选择帧存B,相应的数据总线三态门4打开,2、6关闭。背景寄存器中的颜色数据可以由用户自己定义。
2.2 控制模块
帧存控制器的控制模块产生体选择信号Sel和上电清屏时序信号Clear,控制模块的结构框图如图3所示。图中,/VSYNC是场同步信号,该信号经过一个微分电路,产生一个像素时钟周期宽的使能脉冲信号,控制计数器的计数使能。计数器为一模2计数器,Sel信号为场同步信号/VSYNC的四分频,在出现两个场同步信号之后,才切换帧存,即两个帧存使用的顺序是:AABBAA...这种控制方式类似于电影遮光板的设计思想,使一幅画面在屏幕上重复出现两次,从而在25Hz的帧频时能获得50Hz的场频,使系统视频带宽增加一倍。如当场频50Hz时,图形处理器可以有40ms的时间处理一帧图形数据。图4为帧存控制时序图,Clear信号的产生过程如下:系统上电时,RST信号高一段时间(系统逻辑复位)后变低,在RST的下降沿,ClearA变高,此时场同步低电平有效信号还没到,ClearB为高,Clear为高,系统开始清屏时序。当对两个帧存的清屏工作结束时,场同步信号/VSYNC有效,该信号将"0"电平锁存输出,ClearB为低,Clear为低,系统开始在Sel控制下工作。从控制模块框图中可以看到,Clear信号仅仅在上电复位信号RST结束时(下降沿)才变为高,持续一个场周期之后,Clear信号将一直为低,把控制权交给Sel体切换信号。控制模块的VHDL代码及相应的时序仿真图如图5所示(Modelsim5.5FSE仿真器仿真)。
1 图形显示系统简介
图1是某专用图形显示系统结构框图,图形显示系统采用DSP+FPGA构架。图形处理器采用AD公司的ADSP21061芯片;AMLCD采用Korry公司的KDM710全彩色液晶显示模块,该模块为5×5英寸、600×600分辨率全彩色液晶显示模块,24位数字RGB输入;两个帧存A和B采用IDT公司的71V424L10V高速异步静态RAM(读写速度为10ns)。系统采用双帧存轮流操作方法:当DSP向其中一个帧存写像素时,由FPGA构成的帧存控制器将另一个帧存中的像素顺序读出,送给AMLCD显示;反之亦然。图形显示系统通过IDT公司的71V04双口RAM接收主机的显示信息。图1中的帧存控制器和视频控制器由Xilinx公司的SpartanII芯片XC2S50实现。 视频控制器产生KDM710显示模块所需的一些时序控制信号:行同步信号/HSYNC、场同步信号/VSYNC、数据使能信号DATA_EN和像素时钟信号DCLK等。帧存控制器产生24位RGB颜色数据信号,该RGB数据信号与视频控制器中的时序控制信号相配合,在液晶显示屏上显示出稳定的图形。有关视频控制器的设计方法参见文献[2]。
2 帧存控制器设计
2.1总线切换模块
图2为帧存控制器总线切换模块框图。地址总线通过多路选择器(MUX)切换,所有数据总线通过三态门挂在SRAM的数据总线上。帧存SRAM的数据总线上挂着三路数据:一路是DSP的数据总线数据;一路是FPGA的数据总线数据;还有一路是系统上电清屏用的背景寄存器数据?系统刚上电时,帧存之中存放的是随机数,画面显示的将是随机画面,需要将背景数据送入两个帧存?。总线的切换由体切换信号Sel和上电清屏信号Clear控制。帧存控制器在上电时,通过上电清屏时序将两块帧存中写入背景颜色数据。在上电清屏过程中,Clear信号为高。当Clear为高时,两个地址总线选择器都选择FPGA总线,即FPGA的地址总线指向两个帧存,两个帧存的数据总线全指向背景数据寄存器,即三态门1、2、3和4关闭,而三态门5和6打开。在上电清屏时序完成之后,帧存总线的控制由体选择信号Sel控制。当DSP对帧存A进行写操作时,FPGA所产生的总线对帧存B进行读操作;反之亦然。如图2所示,当Sel为高时,DSP地址总线选择帧存A,三态门1打开,三态门3、5关闭;FPGA地址总线选择帧存B,相应的数据总线三态门4打开,2、6关闭。背景寄存器中的颜色数据可以由用户自己定义。
2.2 控制模块
帧存控制器的控制模块产生体选择信号Sel和上电清屏时序信号Clear,控制模块的结构框图如图3所示。图中,/VSYNC是场同步信号,该信号经过一个微分电路,产生一个像素时钟周期宽的使能脉冲信号,控制计数器的计数使能。计数器为一模2计数器,Sel信号为场同步信号/VSYNC的四分频,在出现两个场同步信号之后,才切换帧存,即两个帧存使用的顺序是:AABBAA...这种控制方式类似于电影遮光板的设计思想,使一幅画面在屏幕上重复出现两次,从而在25Hz的帧频时能获得50Hz的场频,使系统视频带宽增加一倍。如当场频50Hz时,图形处理器可以有40ms的时间处理一帧图形数据。图4为帧存控制时序图,Clear信号的产生过程如下:系统上电时,RST信号高一段时间(系统逻辑复位)后变低,在RST的下降沿,ClearA变高,此时场同步低电平有效信号还没到,ClearB为高,Clear为高,系统开始清屏时序。当对两个帧存的清屏工作结束时,场同步信号/VSYNC有效,该信号将"0"电平锁存输出,ClearB为低,Clear为低,系统开始在Sel控制下工作。从控制模块框图中可以看到,Clear信号仅仅在上电复位信号RST结束时(下降沿)才变为高,持续一个场周期之后,Clear信号将一直为低,把控制权交给Sel体切换信号。控制模块的VHDL代码及相应的时序仿真图如图5所示(Modelsim5.5FSE仿真器仿真)。
电路 FPGA DSP LCD IDT Xilinx 总线 VHDL 仿真 相关文章:
- 基于Virtex-5 FPGA设计Gbps无线通信基站(05-12)
- 基于FPGA的DVI/HDMI接口实现(05-13)
- 基于ARM的嵌入式系统中从串配置FPGA的实现(06-09)
- 基于PLB总线的H.264整数变换量化软核的设计(03-20)
- FPGA按键模式的研究与设计(03-24)
- 周立功:如何兼顾学习ARM与FPGA(05-23)