微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 如何量化高速ADC转换误差率的频率和幅度

如何量化高速ADC转换误差率的频率和幅度

时间:08-20 来源:贸泽电子设计圈 点击:

许多实际高速采样系统,如电气测试与测量设备、生命系统健康监护、雷达和电子战对抗等,不能接受较高的ADC转换误差率。这些系统要在很宽的噪声频谱上寻找极其罕见或极小的信号。误报警可能会引起系统故障。因此,我们必须能够量化高速ADC转换误差率的频率和幅度。

CER与BER

首先,让我们理清误差率描述中的两大差异。转换误差率(CER)通常是ADC关于模拟电压采样的判断不正确的结果,因此,与转换器输入的满量程范围相比较,其相应的数字码也不正确。ADC的误码率(BER)也能描述类似的误差,但就我们的讨论而言,我们把BER定义为纯数字接收错误;如果没有这种错误,那么转换的码数据就是正确的。这种情况下,正确的ADC数字输出未能被FPGA或ASIC等下游逻辑器件正确接收到。代码出错的程度及其出现的频率就是本文余下部分要讨论的内容。

仅仅阅读数据手册中的技术参数,可能难以掌握ADC转换误差。使用转换器数据手册中的单个数据,当然可以对转换误差率进行某种估计,但该数据量化的到底是什么呢?您无从判断多大的样本偏差可被视为错误,无法确定试验测量或仿真的置信度。必须将"错误"定义限定在已知出现频率所对应的幅度以内。

误差源

有多种误差源会造成ADC转换错误,内部和外部均有。外部误差源包括系统电源毛刺、接地反弹、异常大的时钟抖动和可能有错的控制命令。ADC数据手册中的建议和应用笔记通常会说明避开这些外部问题的最佳系统布局做法。ADC内部误差源主要可归因于亚稳态或模拟域中各级之间的残余处理传递,以及数字域和物理层中的输出时序误差。ADC设计团队在器件开发过程中必须分析这些挑战。

图1. 对于满量程上模拟分辨率的各个位,理想ADC样本都有单一数字输出(左图)。实际ADC输出行为的一个例子(右图)显示了与内部和外部噪声相关的某种模糊性。

在一组比较器中,当比较器基准电压精确等于或极其接近待比较的电压时,便可能发生亚稳态状况。比较电压在幅度上越接近基准电压,比较器作出全面判断所需的时间就越长。如果二者之间的电压差非常小或为0,比较器可能没有足够的时间来最终判定比较电压是高于还是低于基准电压。当该样本的转换完成时,比较器输出可能处于亚稳第三态,而不是清晰地判定一个有效逻辑输出1或0。这种犹豫不定会波及整个ADC,可能引起转换错误。

图2. 对于满量程上模拟分辨率的各个位,理想ADC样本都有单一数字输出(左图)。实际ADC输出行为的一个例子(右图)显示了与内部和外部噪声相关的某种模糊性。

在流水线型ADC架构中,还有其他潜在转换误差源,即在级间边界传递处,残余电压从上一级传送到下一级。例如,若两级之间有未校正的增益匹配误差,则残余电压的传递会在后续级中产生误差。此外,负责将一个电压发送到下一ADC级的残余DAC中的毛刺也可能在稍后的处理中引起意外的干扰误差。任何无源元件中都存在的热噪声是所有ADC固有的噪声分量,它决定了ADC处理的绝对噪底。在详细测定ADC的过程中,必须审视和量化所有这些可能的误差源,确保转换器运行时没有任何落差。

噪声分量

折合到输入端的噪声是ADC转换缺陷的一个固有分量,其中包括ADC输入端的热噪声。常常利用ADC输入端开路或浮空情况下的数字输出码直方图来对其进行量化。ADC数据手册通常会说明并显示此噪声。下面的图形给出了此噪声幅度的例子,其在本例中为[N] ±11。  

图3. 输入端开路或浮空时,理想ADC会采样输出一个中间电平失调码,如左侧直方图所示。实际ADC会有折合到输入端的噪声,其在对数尺度上应表现为高斯形状的弯曲直方图(右侧)。

ADC的积分非线性(INL)是ADC满量程输入范围内实际样本编码相对于理想输出的传递函数。ADC数据手册通常也会说明此信息并给出其曲线。与理想编码的最大偏差通常用某一数量的LSB来表示。下面是INL曲线示例。虽然它反映了一定量的绝对误差,但在大部分16位或稍低分辨率的高速ADC中,INL通常只有0到3个码。它不是转换器实际误差率的主要贡献因素。 

图4. INL曲线示例,在所有ADC编码上测量,与理想样本相比,最大误差为±1 LSB或±1个码,对ADC转换误差而言基本上可忽略不计。

测试方法

针对长期CER检测,测试方法可以使用非常低的ADC输入频率(相对于时钟速率而言)。在任何两个相邻样本点之间构成一条直线,正弦波斜率可近似为该直线的斜率。类似地,略高于采样速率的输入频率会混叠为低频。对于这种情况,有一个可预测的理想解决方案能让各相邻样本处于前一样本的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top