车牌定位在电子警察中的工程应用
从gmax开始反向积分(求和),就可以得出th,而且th会随着图像的亮暗程度、对比度自适应变化。
2.3 图像旋转与车牌定位
在实际施工中,镜头的架设常受到条件的限制,图像的倾斜程度特别大。这时,用图像的旋转不变距显然难以凑效,只有对图像进行旋转。而且这个角度的设定对具体的环境不再发生变化,知道了这个角度,也有利于汽车的运动轨迹判断。
进行完前面的预处理工作后,定位车牌就容易了。对图像自下而上逐行扫描,在限定的模板宽度内,若变化频率达到一定次数,例如10次,则向下开始扫描,直到满足模板高度,将这个区域定为车牌的候选区。如果没找到车牌,则将车牌的模板进行一些调整,再继续搜索,还是找不到,就是没有车牌。对于多个候选的区域,可以进行粗略的聚类估计和简单的逻辑判断,以提高定位准确性。
3 运行结果
用这一套组合策略,对不同时间、不同交通路口、不同光照下抓拍的汽车图像进行车牌定位识别,定位结果如表1所示。
在选图时,夜间图像占20% 左右。从上述结果,可以清楚地看出,公共汽车的准确率最低,这是因为公共汽车有许多广告和粘贴纸,造成了错误定位。卡车的车牌在车框下边,较为隐蔽,有些车牌特别脏,识别比较困难。而出租车和中巴车的错误定位大多是夜间图像引起的。还要说明一点,夜间图像在拍摄时加了红外补光系统。针对工程应用的水平,这个结果是令人满意的。
本文只介绍了电子警察抓拍系统中车牌定位的内容。电子警察系统最大的困难就是受自然环境的影响特别大,而且安装时总是要去适应地形环境,所以拍摄到的图像有时非常不好,并不象实验室处理的那么理想。因此要找到一种适应性较好的定位方法,只有舍弃许多优越的处理方法。本文使用的这种图像处理的策略,只设定几个参数,在特定的环境中可以实现二值化阈值的自适应调整,将车牌识别提高到工程应用的水平。总体上来说,具有较好的适应性。
- 汽车影音系统的图像处理器的应用(08-03)
- 基于DSP的图像处理在车牌识别中的应用(02-24)
- 基于嵌入式的车辆偏离预警系统研究(11-24)
- 汽车显示器架构中的外部和内部接口及其整合选型(02-22)
- 车牌识别系统技术的研究与应用(03-12)
- 光电鼠标技术在汽车领域应用的可行性(08-13)