微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 车牌定位在电子警察中的工程应用

车牌定位在电子警察中的工程应用

时间:06-15 来源:电子技术应用 点击:

从gmax开始反向积分(求和),就可以得出th,而且th会随着图像的亮暗程度、对比度自适应变化。

2.3 图像旋转与车牌定位

  在实际施工中,镜头的架设常受到条件的限制,图像的倾斜程度特别大。这时,用图像的旋转不变距显然难以凑效,只有对图像进行旋转。而且这个角度的设定对具体的环境不再发生变化,知道了这个角度,也有利于汽车的运动轨迹判断。

  进行完前面的预处理工作后,定位车牌就容易了。对图像自下而上逐行扫描,在限定的模板宽度内,若变化频率达到一定次数,例如10次,则向下开始扫描,直到满足模板高度,将这个区域定为车牌的候选区。如果没找到车牌,则将车牌的模板进行一些调整,再继续搜索,还是找不到,就是没有车牌。对于多个候选的区域,可以进行粗略的聚类估计和简单的逻辑判断,以提高定位准确性。

3 运行结果

  用这一套组合策略,对不同时间、不同交通路口、不同光照下抓拍的汽车图像进行车牌定位识别,定位结果如表1所示。

在选图时,夜间图像占20% 左右。从上述结果,可以清楚地看出,公共汽车的准确率最低,这是因为公共汽车有许多广告和粘贴纸,造成了错误定位。卡车的车牌在车框下边,较为隐蔽,有些车牌特别脏,识别比较困难。而出租车和中巴车的错误定位大多是夜间图像引起的。还要说明一点,夜间图像在拍摄时加了红外补光系统。针对工程应用的水平,这个结果是令人满意的。

  本文只介绍了电子警察抓拍系统中车牌定位的内容。电子警察系统最大的困难就是受自然环境的影响特别大,而且安装时总是要去适应地形环境,所以拍摄到的图像有时非常不好,并不象实验室处理的那么理想。因此要找到一种适应性较好的定位方法,只有舍弃许多优越的处理方法。本文使用的这种图像处理的策略,只设定几个参数,在特定的环境中可以实现二值化阈值的自适应调整,将车牌识别提高到工程应用的水平。总体上来说,具有较好的适应性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top