基站功率放大器的监控和控制
和前置驱动器级,以满足增益和效率要求。多通道DAC可以满足这些模块的不同电平设置和增益控制要求。
为实现对PA栅极的精确控制,ADI公司的AD5321、AD5627和AD5625等DAC分别提高12位单路、双路和四路输出。这些器件具有非常出色的源电流和吸电流能力,在大多数应用中可无需输出缓冲器。低功耗、保证单调性和快速建立时间等特性相结合,能够实现精确的电平设置应用。
若精度不是主要规格,且可以接受8位分辨率,则数字电位计是更具成本效益的选择。数字电位计具有与机械电位计或可变电阻器相同的电子调整功能,而且提供更高的分辨率、固态可靠性和出色的温度性能。非易失性、一次性可编程(OTP)数字电位计非常适合时分双工(TDD) RF应用,其中,PA在TDD接收期间关断,在发射期间通过固定栅极电压导通。这种预先编程的启动电压在PA晶体管导通进入发射阶段时可减小导通延迟,提高效率。在接收期间关断PA晶体管可避免发射噪声干扰接收信号。这种技术还能提高PA的总体效率。根据通道数目、接口类型、分辨率和非易失性存储器要求的不同,有大量数字电位计可供这类应用选择。256抽头、一次性可编程、双通道的I2C电位计,例如ADI公司的AD5172,就非常适合RF放大器中的电平设置应用。
通过精确测量PA输出端的复杂RF信号的功率水平,可以对放大器增益进行更好的控制,从而优化器件的效率和线性度。利用均方根(RMS)功率检波器,可以从WCDMA、EDGE和UMTS蜂窝基站中的RF信号提取精确的功率有效值。
图3显示了一个简单的控制环路,其中,功率检波器的输出端与PA的增益控制终端相连。根据输出电压VOUT与RF输入信号之间的既定关系,功率检波器调整VOUT上的电压(VOUT现在是误差放大器输出),直到RF输入端的电平与所施加的控制电压VSET相对应。加上ADC便构成完整的反馈环路,它能够跟踪功率检波器的输出,并调整其VSET输入。这种增益控制方法可用于信号链的前面几级中使用的可变电压放大器(VVA)和VGA。要测量发射和接收功率,可采用两个功率检波器同时测量两个复数输入信号。在VGA或前置驱动放大器位于PA之前的系统中,只需要一个功率检波器。此时,一个器件的增益是固定的,而VOUT为另一个器件提供控制输入。
当在高压供电线上检测到电压尖峰或过大电流时,某些应用中的数字控制环路可能不够快,无法防止器件受损。数字控制环路包括:利用电流检测、模数转换来检测高端电流,以及通过外接控制逻辑处理数字数据。如果环路判断出线路电流过大,它会向DAC发送一个命令,降低栅极电压或关断该部分的电源。
可以使用模拟比较器并通过一个RF开关来控制PA的RF信号输入(图4)。如果在供电线上检测到大电流,可以关断RF信号以免损害PA。采用模拟比较器就意味着不需要数字处理技术,因此,控制环路要快得多。电流检测的输出电压可以直接与DAC设置的固定电压进行比较。当电流检测的输出电压高于该固定电压时,比较器可触发RF开关上的一个控制引脚,几乎立即截断输入到PA栅极的RF信号。
图5所示为一个典型的采用分立器件的PA监控和控制配置。唯一被监控的放大器是PA本身,不过,信号链中的任一个放大器都可以采用这种方式进行处理。所有分立器件都采用同一条数据总线工作,本例中为I2C数据总线,并通过一个主控制器来予以控制,以最大程度地降低器件数量、复杂性和成本。
从设计的角度来看,使用分立器件来监控和控制基站PA的主要优势在于定制产品的选择范围相当大。PA供应商设计的PA前端信号链越来越复杂,包含了各种不同的增益级和控制技术。现有的多通道ADC和DAC都非常适合用来处理不同的蜂窝基站系统划分及架构,从而让基站设计人员能够实现经济高效的分布式控制。
- 针对基站和卫星通信的高线性度RF前端解决方案(07-10)
- 对比ADI两代TD-SCDMA射频IC得到的启示(05-02)
- 应用于基站的WiMAX CPE收发器介绍(07-11)
- ADI RF信号源解决方案(10-20)
- 用于可靠的电容传感器接口的模拟前端IC测量方法(07-30)
- 射频电路设计,从4个方面入手(09-08)