摩尔定律还能束缚芯片多久?
1965年,计算机技术处在萌芽期,计算机工程先驱戈登·摩尔(Gordon Moore)写了一篇论文,冲击了科技产业。摩尔认为,计算机的性能每隔12个月翻一倍,成本下降50%。过去40年的历史证明摩尔定律相当正确。
现在摩尔定律进入困难时期。去年,英特尔曾表示,现在要让处理器的性能翻倍需要30个月的时间。2016年5月,曾经刊发一篇文章,标题就是"摩尔定律终结"。
的确,计算机性能的提升速度正在放缓。放缓还带来一个问题:许多下一代产品依赖于更快、更节能 、更便宜的芯片,而芯片的进步建立在一个假设之上,那就是摩尔定律仍然有效。如果芯片的提升速度放慢,甚至停滞,VR、AI、无人驾驶汽车、医疗、遗传工程,甚至连最新的智能手机都会受到干扰,无法快速推出。
摩尔定律真的会死亡吗?也许有些夸大。
芯片到底可以变得有多小
摩尔定律并没有死亡,但是它的处境的确不怎么好。如果要让摩尔定律恢复生机,工程师和产品设计者必须改变方向,寻找新的突破。
"必须"不是建议,而是物理的必然。几年来,计算机工程师不断缩小芯片的尺寸,获得更高的性能,但是这种策略渐渐走到了尽头。设计芯片时我们遇到了物理和几何瓶颈:要让芯片变小极为困难。
现代芯片设计将芯片组件之间的间隙缩小到十几纳米。如果不是工程师,可能不知道十几纳米是什么概念。一张纸的厚度约为0.1毫米,它相当于10万纳米。现在芯片中空间的尺寸大约相当于一张纸厚度的1/8000。虽然进一步缩小尺寸是有可能的,比如降到7纳米,不过按照产业的估计,即使只是开发一款7纳米原型芯片,成本也会达到1亿美元,目前全球只有3家企业可以做到:台积电、三星和英特尔。英特尔已经宣布,投入90亿美元开发7纳米处理器,开发至少要4年时间。
7纳米实际上已经做到了。如果想进一步缩小尺寸,进步的空间并不大。因此在7纳米之后,如果我们想提高计算技术的性能必须从两个方面下手:一是热管理,二是能源密度。热量和能源问题是巨大的设计难题,也是"设备杀手"。它们对创新至关重要,由于尺寸受到限制,热量和能源问题束手束脚,所以我们基本上只能维持现状。
第一步:减少热量
要让计算性能飞速提升,我们必须强化热量管理技术。打个比方:要让汽车跑得更快,我们需要安装更强大的引擎,装备更好的轮胎;但目前的问题在于,如果让引擎更强大,轮胎会爆胎。
热问题已经阻挡了某些计算机技术的进步,比如堆叠(stacking),这种设计方案将计算机组件堆叠起来,比如处理器、内存、电源。采用堆叠设计,机器内部命令、电能移动的距离就会缩短,节省能源,提升处理速度。
虽然堆叠组件可以让计算机更快,但是生成的热量比分离更多。组件靠得太近为工程师带来挑战,他们要让设备在安全可行的温度下运行。正因如此,高通和英特尔已经抛弃了堆叠概念。英特尔组装和测试开发技术主管巴巴克?沙比(Babak Sabi)说:"从逻辑上讲,没有人能够真正将内存堆叠,除非有人可以拿出热解决方案……我不认为有人会使用堆叠技术。"
老式散热技术依赖于铜管和铝管,用垫片导热。但金属管和垫片太笨重了,装在笔记本、手机、汽车中效率不高。另外,老散热系统太坚硬,不够灵活,结果成为了设计的"噩梦":你必须用铜垫片设计苗条性感的智能手机。
热技术阻碍了计算机整体性能的提升,但是技术正在快速进步,这是一个好消息。以后的热解决方案包括了凝胶、糊状物、新型柔性纤维,抛弃那些笨重坚固的材料。例如,NASA正在测试新散热材料,这种材料很轻很柔软,跟天鹅绒很相似。
第二步:增加能源密度
如果说热问题让摩尔定律"蹒跚前进",那么能源密度问题则将摩尔定律变成了"跛子"。
所谓能源密度,就是说我们可以在特定空间内存储多少能源。能源密度越高,相同尺寸的电池就可以提供更多的电能。我们可以用赛车类比,如果说计算机处理器就是引擎,热管理是轮胎,那么能量密度就是燃油。
计算机及其它电子产品越来越快,越来越强,我们需要在更小的空间存储更多的能源,可惜电池技术进步缓慢。三星Note 7告诉我们:一面我们希望电池能够提供更多的电能,另一方面又要遵守严格的设计规范,二者必须平衡,如果平衡稍稍打破就会变成灾难。
能量密度问题成为一只拦路虎,影响了下一代计算产品的发展,比如机器人、无人机、太空探索设备、电子设备。在这些领域能量密度决定一切。对于消费者来说,由于能量密度没有大幅增加,所以我们会觉得手机电池不够用。
- 摩尔定律已不再能降低芯片价格(12-19)
- 摩尔定律消退后 计算机行业将如何发展?(03-28)
- 2021年!摩尔定律要失效了!(07-27)
- 后摩尔定律时代:三大发展方向(08-30)
- 物联网的"摩尔定律",你知道吗?(01-23)
- 后摩尔定律时代,半导体厂商应该怎么做?(02-04)