微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > RFIC/MMIC > 可调谐RF激活你的LTE投资

可调谐RF激活你的LTE投资

时间:10-30 来源:益登网站 点击:

Art Morris / WiSpry

当 LTE(Long Term Evolution,长期演进技术)的部署气势重新抬头,企业经营者与手机制造商都该明白,4G网络并非3G性能萎靡不振时的万灵丹。事实上,大家必须了解,完整的LTE解决方案包括了提升速度与可靠度,以及一系列持续强化处理,以避免因网络流量过大、数据使用量增加,还有外形尺寸限制等因素而造成的拥塞。

一般来说,高数据传输率中使用的调变方案较为复杂,对信号处理的要求也格外严格。更麻烦的是,若要实现全球LTE,就必须使用比3G更多的频段,便携设备的基本需求需具备7波段,而要达到真正的全球漫游,则需13波段以上。另外,更重要的是,天线的性能限制严重威胁到速度,这使得多功能服务供应商无不翘首盼望,期待LTE能提供其承诺的投资回报率。

可调谐RF采用体积更小但网络性能更好的天线来提升LTE性能,也就是将可调谐RF器件附加到天线本身,这样工程师就能设计出体积更小但性能更高的天线。通过这种方式,可调谐RF成功解决了业界人士所熟知的空间限制。

另外,利用单一天线来接收更多频率范围的调谐功能,自然减少了手机实际运行时所需的整体天线数量。依据MIMO(Multiple Input Multiple Output,多重输入多重输出技术)的趋势来看,这点意义重大,因为在该技术中,有多达4根功能各自不同的天线存在。可调谐RF以最高效率进行发送与接收,而且不受其他干扰源(如头和手的位置)的影响。

解析高性能可调谐 RF 器件
在少数已进入市场的天线问题补偿方案中,只有动态可调谐射频微机电系统(RF-MEMS)技术能真正有效达到目的。

业界领先的可调谐RF器件,是采用数字电容数组,利用了RF-MEMS技术将电子电路集成于单一硅晶粒(die)上。

RF-MEMS电容器属于机械器件,置于硅晶圆(silicon wafer)表面,他包含两片金属板,且会因外加电压产生的静电而靠在一起。这两个金属板之间还设有一个绝缘层,这样就构成了电容器。相对于一般以电流通过半导体基板的实体开关,在RF-MEMS器件上的电流只在金属中流动,损耗极低,且能进行超线性运作。

由于RF-MEMS电容器集成于单一CMOS晶圆上,因此所有控制MEMS的器件也都在同一个晶粒上,不仅节省了路由空间,还将往来于控制线的信号耦合降至最低,这点很关键,因为器件启动时往往需要高电压(大约 35V DC)。既然RF-MEMS电容器位在同一个CMOS晶粒上,那么所需电压就由芯片上的集成电荷泵来产生,这样一来,唯一需要的外部电源电压,只需2.7-3.3V就够了。此外,所有器件的驱动程序都可内置,而所有电容设定都可通过寄存器来选择,不论寄存器是通过业界标准的SPI或MIPI RFFE串行接口。

\
图 1 RF-MEMS器件的横截面

RF-MEMS器件机械结构所产生的机械共振频率较低-约60kHz。这是因为整段梁(beam)会以驱动信号的半波长共振,所以当MEMS器件闭合,共振就不那么明显,且会转移为数兆赫频率。这种低机械共振频率,造就了其优秀线性度,因为MEMS器件是无法直接对千兆赫范围之信号变化产生反应的。

电容率
在可变电容数组中,数组中各独立电容的“开/关”比例,以及整个数组的“开/关”比例,都非常重要。当MEMS器件被“抬起”或未被接触,电容器就处于最小电容状态,即“Cmin”。同样地,当电容器被驱动,且位于“闭合”位置,电容器就会处于最大电容状态,即“Cmax”。而电容率(Cratio)的定义如公式 (1) 所示。

\公式(1)

数组中的每个电容都有类似图2的模型存在。在此模型中,C1和C2代表接地的并联式寄生电容,通常就是接到装配环境与硅基板。而 Cseries代表数字电容器,可在Cmin和Cmax之间调节。

\
图 2 MEMS电容器模型

当芯片上的MEMS器件设计影响了这些寄生电容值,C1和C2就不相等。

若该器件被设定为串联状态,那么 Cratio 通常就是15。请注意,还会有些接地的并联式寄生电容存在,而其值将取决于电容器尺寸,通常为Cmax的5-15%。

但若该器件被设定为并连状态,例如Port B接地,其中一个寄生电容C1则与并联数字电容器并联,因而增加了Cmin值。此时,Cratio 通常就为7。

质量因子(Q 值)
至于RF-MEMS电容器的质量因子(Quality Factor)部分,显著降低金属梁(beam)电阻则提供了关键优势:低耗损。这样的低耗损在一般规格中以“Q值”(质量因子)来表示。Q值其实就是电阻抗(reactive impedance)(Xc)和实际阻抗(Rc)的比值,如公式 (2) 所示,而其中ESR则是指电容器的“等效串联电阻”。

\公式(2)

降低特定C(电容器)的ESR,自然就能提高Q值。而RF-MEMS梁(beam)上的金属走线能提供极低ESR,且比起其他技术要低很多。在1GHz测量晶圆上所测得的RF-MEMS技术Q值,通常超过200。相比之下,同频率典型CMOS电子器件的Q值,则通常不到30。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top