微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 较大功率直流电机驱动电路的设计与实现

较大功率直流电机驱动电路的设计与实现

时间:02-19 来源:互联网 点击:

1 为自举二极管, C4 为自举电容。 并不是电容的值越大就越好, 电容的取值和IR2103 的工作频率密切相关, 电容取值越大工作频率越低。 电容的漏电流对系统的性能有很大影响。 自举二极管要承受系统所有的电压, 自举二极管的前向压降也影响着自举电容的选择, 同时自举二极管的开关速度也直接影响系统的工作频率, 一般选用超快恢复二极管。 由示波器获得自举电路升压波形如下图7 所示:

图7 自举电路升压波形

  图中B部分为自举升压后VB端的电压, 图中A部分是由于在上管关断的过程中, 由于下管中的寄生二极管,会产后续流, 使VS 端产生负电压, 从而使电容过充。 要削弱电容的过充可采用0.47uF 以上的自举电容, 同时可以在地与VS 端加入续流二极管。 如下图所示:

图8 在IR2103 中加入续流二极管电路。

  图中D2即为续流二极管, 续流二极管采用普通二极管即可, 但VS电压恢复越快, 自举电容过充现象越不明显, 本系统采用1N4148 作为续流二极管。

  由于驱动器和MOSFET 栅极之间的引线、地回路的引线等所产生的电感, 以及IC 和FET 内部的寄生电感,在开启时会在MOSFET 栅极出现振铃, 一方面增加MOSFET 的开关损耗, 同时EMC 方面不好控制。 在MOSFET 的栅极和驱动IC 的输出之间串联一个电阻(如图9 中B 所示)。 这个电阻称 为"栅极电阻", 其作用是调节MOSFET 的开关速度, 减少栅极出现的振铃现象, 减小EMI, 也可以对栅极电容充放电起限流作用。 该电阻的引入减慢了MOS 管的开关速度, 但却能减少EMI, 使栅极稳定。

图9 消除振铃电路。

  MOS 管的关断时间要比开启时间慢(开启充电, 关断放电), 因此就要改变MOS 管的关断速度, 可以在栅极电阻上反向并联一个二极管(如图9 中A 所示), 当MOS 管关断时, 二极管导通, 将栅极电阻短路从而减少放电时间。 由于VS 端可能出现负电压, 在VS 端串入一个合适的电阻, 可以在产生负电压时起到限流作用, 针对负载电机为感性器件, 在H 桥的输出端并一个小电容, 并在局部供电部分加一个去藕电容十分必要。 其电路如下图所示:

图10 限流去耦电路。

  图中C7 为局部去藕电容, 可以取100uF, C6 为输出电容, 根据负载取值。 由于采用电容式自举电路, 电容在工作的过程中会自行放电, 所以PWM波的占空比接近100%但不能达到100%. 但这不影响电机的正常工作, 因为电机本身固有的特性, 电机有一个较小的饱和区, 即或占空比增大, 其转速也不会有明显的变化。 因此上述电路完全满足工作的需要。

  3 硬件测试

  为了对驱动器性能进行测试, 选用25D60-24V 的直流电机进行闭环控制控制, 电机的额定功率为60W, 额定转速为2800rpm, 额定电压为24V, 额定电流为3.8A. 其电机的最高转速可达2910rpm, 电机启动的最低转速为44rpm, 堵转时无明显发热现象。 为了测试电路工作的稳定性, 连续三天电机工作8 小时以上, 电路的发热较小;为了测试电路的抗冲击, 抗干扰能力, 系统在开与关之间连续进行多次切换, 电路工作没有出现任何故障;另外系统在突然增加负载的情况下也能正常工作。 因此完全满足驱动的需要, 而且设计过程中, 为防止启动和制动电流的骤然升高, 电路有较大的电流冗余, 电路中最高电流可以达到8A, 有效地保证了电路工作的稳定性,并具有很强的抗干扰能力。

  4 结论

  本文设计并实现了一种较大功率直流电机驱动电路, 从器件的选择到系统的实现, 详细分析和探讨了电路设计过程中可能出现的各种问题, 并通过理论计算和工程实践解决上述问题。 该电路鲁棒性强, 实用性广, 尤其适合驱动较大功率的直流电机。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top