功率放大器的使用极限
为了实现功率放大器的可靠性设计,就必须考虑放大器的承受能力。通过功率放大器的安全工作区(SOA)曲线来确定功率的范围限制。放大器的承受能力取决于放大器的负载和信号的状态。
图1所示的一个简化的功率运算放大器,输出晶体管Q1和Q2给负载提供正的和负的输出电流。IOUT表示的是由放大器流出的电流,因此Q1是供给输出电流。对于正的输出电流,Q2是关的,从而可以略去。
在Q1有负载时,它的承受力是与输出电流和Q1两端的电压(它的集-射电压VCE)有关的。这两个量的乘积IOUT·VCE就是Q1的功耗。这个功耗是一个需要重点考虑的问题,但是"安全工作区"提供了一个放大器限制范围更完全的描述。
安全工作区
功率晶体管的功率适用范围是由它的安全工作区(SOA)来决定的(见图2)。SOA曲线表示了允许的电压(VCE)和电流(IOUT),最大安全电流是 VCE的函数。在VCE较低时,可以把更大输出电流输送给负载。在这区域上,如果超出最大电流,可能使芯片过载,并损坏器件。当VCE增加时,晶体管的功耗也增加,直到使结温上升到它的最大安全值为止。沿着这个热限定区域(虚线)的所有点都产生同样的功耗。图2中VCE·IO是个常量120W(在25℃ 时),该曲线在这一区域上的所有点产生同样的最大结温,超过这一区域内的安全电流,就可能损坏晶体管。
当进一步增加VCE时,超出热限定区域,安全输出电流下降地更快,这个所谓的二次击穿区域乃是双极晶体管的一种特性。它是由双极晶体管产生"局部过热"引起的。在二次击穿区域内,超过安全输出电流会产生局部的热失控,从而损坏晶体管。
最终极限是晶体管的击穿电压,不能超过这个最大的电源电压。通常SOA曲线是表示安全输出电流如何随管壳温度而变化的曲线,这说明管壳温度对结温有影响。另外的一些曲线表示的最大安全电流,是对于那些根据器件的热时间常数而定的各种不同持续时间的脉冲来说的,应当把SOA曲线理解为绝对最大范围,在该曲线的热限定区段的任何点工作,都将产生最大许可的结温(一种对于长期工作的情况下建议不要采用的状态)。
尽管在曲线的二次击穿区域上工作只产生较低的温度,这条线仍是绝对最大值,在这条线以下工作,将提供更好的可靠性(即更好的平均故障时间-MTTF)。
散热
你除了保证使用不超出功率放大器的安全工作区外,还必须保证放大器不过热。为了提供一个足够的散热器,你必须确定最大功耗。下面将详细叙述影响SOA功耗及散热器要求的方法和要考虑的问题。
短路
一些放大器的应用设计必须满足能经受得住对地短路的要求。这就迫使全部的电源电压(或是V+或是V-)都加在导通的输出晶体管两端,该放大器将马上进入电流截止状态。为了经受得住这一状态,必须把带可调电流限制的功率运算放大器控制在安全电平上。
当OPA502(图2)的电源是±40V时,保护对地短路的最大电流限制值应是多少?
管壳温度保持在25℃时,就应把电流极限值最大为3A。如果把管壳温度维持到85℃,则2A的电流限制将是安全的,此时功耗将是80W,则可用0.75℃/W的散热器。例如,若运算放大器必须要经得住对一个电源的短路,那么最大VCE将是两个电源的总和。
一般认为,没有必要对所有的应用都做短路保护设计,但对功率放大器来说,这正是一个严格的条件。像熔断器或感受故障状态的电路那样的辅助手段就能够保证放大器所必须承受短路的时间。这可以大大地降低散热器的要求。
阻性负载
考察一个驱动电阻负载的功率放大器时,人们仅在最大输出电压和电流时进行安全性检验,但这种状态不总是它最大的承受能力。
在最大输出电压下,导通的晶体管两端的电压VCE是处在最小值的情况下,而功耗是最低的。事实上,如果放大器输出可以沿着电源曲线变化,则输出电流可以变得很大的,但放大器的功耗将会是零,因为VCE是零。
图3 描绘出了来自电源的功率、负载的功率和作为具有阻性负载输出电压函数的放大器功耗。提供给负载的功率随着输出电压的平方(*P=VO2/R)而增加,而来自电源的功率线性地增加,放大器的损耗沿抛物线变化。如果放大器的输出能一直沿着电源的轨迹变化(虚线部分),则会把电源的全部功率,施加输送给负载,从而放大器的功率将会是零。
放大器的峰值功耗出现在V+/2的输出电压或50%的输出下,在这一点上,VCE 是V+/2而IO是V+/2RL。放大器在此最坏点上的功耗为VCE和IO的积,即(V+)2/(4RL)。检验这种状态,以保证其处在放大器的安全工作区(SOA)内。此外还要确保对于计算出来的功耗应有足够的散热,以防过热
功率放大器 相关文章:
- 采用异相功率放大器提高WLAN系统功率效率(01-22)
- 什么是高功率放大器(01-24)
- 封装了硅晶体管裸片的S波段功率放大器(上)(03-01)
- 如何利用实用的方法构建C类功率放大器(下)(05-18)
- 如何利用实用的方法构建C类功率放大器(上)(05-18)
- Doherty功率放大器研究与设计(06-23)