变频调速系统谐波治理
5 工程案例
5.1 系统受干扰时出现的故障现象
2008 年8 月某公司进行风机、水泵节能改造时,安装了9台ABB ACS系列变频器,其中8 台变频器是ACS-510系列,功率范围为45耀110 kW;另外一台变频器是ACS-800 系列,功率为200 kW,此台变频器和另外一台45 kW变频器安装在一台1 000 kV·A车间变压器供电的400 V母线上。变频器的4耀20 mA 调速信号均来自PLC 控制系统。
在调试中ACS-510 系列变频器运转正常,但ACS-800变频器运转时出现了两个问题。
1)两线制仪表信号受到干扰,测量值出现波动。波动比较严重时,控制系统发出压力高或者压力低的信号;干扰非常严重时,控制系统误认为是压力过低,而自动关闭一些阀门。图1 曲线前半部分为变频器运行时,仪表记录曲线,记录值波动很大;曲线后半部分为变频器停止运行后记录曲线,曲线比较平缓,幅值波动很小。从记录曲线可以明显地看出变频器运行对仪表信号干扰非常强烈。
但是,除了两线制以外的仪表,均正常工作,没有受到干扰。
2)变频器运行后,车间变压器保护装置误动作,经常发出过负荷报警,甚至还发生误动作跳闸的事故,而变压器实际负荷才500 kW,没有出现过负荷。
5.2 故障分析与排除
根据以上两种故障现象,初步判断是因为变频器功率比较大,所以产生的电磁干扰也比较强烈,并且是由于控制线与动力线距离比较近造成。系统原理如图2所示(黑实线表示一次线路,表示二次控制线路或仪表线, 表示谐波传播途径),其4耀20 mA 调速信号电缆采用的是屏蔽双绞线,穿镀锌钢管后沿电缆桥架辐射,钢管与电缆桥架的距离约为5 cm。
将控制电缆和动力电缆之间的距离调整到30 cm 以上再次试验,发现干扰现象仍然存在;为了再次确认是否是电磁干扰沿控制线路引入PLC控制系统,将控制电缆从PLC 控制柜去除,变频器控制柜现场手动调速,发现两线制仪表信号受到的干扰现象仍然存在,所以基本排除了是电磁干扰信号沿控制线路引入PLC 控制系统。随后采用专用电能质量测试仪对变频器供电回路进行谐波测试。测试谐波数据如表2 所列,谐波电流波形和谐波含量如图3、图4 所示。
从测试的谐波数据可知,变频器产生了大量谐波,主要以5次、7 次、11 次谐波居多。
从变频器电流曲线可以明显的看出,谐波电流使正常的电流曲线不再是正弦曲线;谐波含量柱形图所显示的情形和所测得的谐波数值相吻合,证实了是变频器谐波以电磁传导方式传播到供电网络中去,从而影响到仪表变压器继电保护装置不能正常工作。
根据以上测试结果,仔细分析了ACS-510 系列变频器和ACS-800 变频器的结构区别,从ABB变频器使用手册和其他技术资料中发现,两种变频器在其附件配置上稍微有点区别。ACS-510系列变频器输入端内置了一台变感式交流输入电抗器和RFI滤波器。交流电抗器和RFI 滤波器是标准配置,在实际使用中不需要额外的滤波器。而ACS-800变频器在输入端只内置了一台交流输入电抗器。EMC 滤波器是可选设备,如果在设备订货时没有要求强调安装EMC 滤波器,ABB 厂家只在输入端内置一台交流输入电抗器。
经核实,这台变频器订货时确实没有要求配置EMC 滤波器,于是在变频器输入端增加了一台变频器专用FT330-400型输入滤波器,然后再开机试验,仪表信号受干扰现象消除,并且变压器继电保护装置误动作事故也不再发生。
6 结语
为了确保变频器系统的安全运行,减小变频器电磁噪声对周边设备的干扰,应将变频器系统的电磁兼容性、抗电磁干扰能力及降低电磁干扰等,作为变频器系统设计、制造、施工安装中综合考虑的重要部分,须符合相关电磁兼容性标准和规范要求。
- 以创新的IGBT技术、合理的器件选型和有效的系统手段优化变频器设计(01-09)
- 台达变频器在数控机床的应用(06-29)
- 用薄膜电容器替代铝电解电容器的分析与实践(04-20)
- 关于变频器输出端连接开关的探讨(06-20)
- 基于台达变频器的EPS解决方案(07-29)
- 高性能V/f控制在中压变频器中的实现(07-08)