微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于Matlab/Simulink的变频系统仿真

基于Matlab/Simulink的变频系统仿真

时间:08-23 来源:电子技术应用 点击:

 0 引言

节能减排对于保护环境和国民经济的可持续发展有着巨大作用,己得到世界各国政府和人民的重视,为节省工业用户中使用电动机时消耗的大量的电能,交流变频器调速用得愈来愈多,特别是在风机,泵类的调速中。

不仅如此,在一些可再生能源的装置中也要大量采用变频装置。例如在风力发电利用永磁发电机发电的直驱发电系统中,其产生的低频电压须经变频后向工频电网送电;又如风力发电中目前广泛采用双馈感应发电机(DFIG),允许转子异步运行,但又要和电网联接,稳定运行,这时必须要向转子输入滑差频率的电流,因滑差可正可负,要求变频器既能送出电能到转子,又能将转子能量反馈到电网。

众所周知,变频器最主要的部件是逆变器,早期的逆变器,比如三相桥式逆变器常采用6脉冲运行方式,其输出电压为方波或阶梯波,谐波含量很大。

近年来,随着开关频率允许很高的全控型电力电子器件,如IGBT,GTR,IGCT等的问世,逆变器的控制大多被脉宽调制PWM代替,其中以正弦波脉宽调制SPWM 用得最多。PWM的优点是可以同时完成调频、调压的任务,使输出电压中谐波含量极大地减少,此外由于开关频率高,所以有利于快速电流控制。在设计和研究变频器时,最方便的方法,无疑是利用仿真工具,应该说经过近三十年发展起来的MATHWORKS公司的Matlab软件,特别是它提供的Simulink仿真工具,应是最佳选择之一,它是功能十分强大而齐全的仿真软件,有许多工具箱,用户可以从工具箱中取出所需的元器件,通过联接等操作,建立与实物相对应的数学模型,从而对它进行测试,所得仿真结果可供设计研究参考。

在Simulink(7.04)工具箱中有电力系统SimPowerSystem的工具箱,为变频器仿真提供了几乎所需的全部元器件,所以使用它们很容易进行仿真。文献[1]是这类仿真的一个范例,它对一个双PWM 交-直- 交逆变系统进行了仿真,即将1 000 Hz,500 V的三相交流电压转换为50 Hz,400V的三相交流电压,仿真时全部应用工具箱内的元器件,包括PWM发生器。

应该指出在实际变频器的应用中,要求变频器输出的不是某个固定频率,而是频率、幅值能变化的输出电压。例如双馈感应发电机(DFIG)转子侧的变频系统,随着风速及转子转速的变化,向转子侧供电的电流的大小和滑差频率也都要相应变化,这样从工具箱中取出的、具有固定输出频率和恒定电压的SPWM发生器就不能胜任,必须要由外部控制的SPWM发生器来实现,本文采用设计的PWM 发生器的外控单元,来实现变频器可变的输出电压频率和幅值的实时仿真。

1 交-直-交变频器的结构类型

图1为典型的交-直-交变频器原理图,主要由整流器Rectifier(可控或不可控),及直流侧电容器C,电压源逆变器VSI,以及用于控制的PWM发生器组成。实际中还可能有输入、输出侧滤波器(图1中未画出),此外图1上还表示出了三相电源及负荷电动机,这是一种比较典型的用法。

图2 表示了风力发电DFIG 用的向转子供电的变频系统原理图,除了电网(Ac Power Grid)和DFIG外,它主要由电网侧逆变器(Inverter on Grid Side)和转子侧逆变器(Inverter on Rotor Side)及各自连接的PWM发生器,和直流侧电容器C组成。当转子速度小于定子磁场的同步转速时,网侧逆变器工作于整流状态,转子侧逆变器工作于逆变状态,反之,当转子速度大于同步转速时,转子侧逆变器工作于整流状态,网侧逆变器工作于逆变状态,这种变频器工作时能量是双向流动的。因此图1类型的变频器己不适用。为维持直流电压稳定,通常给两台逆变器直流侧并接电容器C,构成电压源逆变器,图2中还备有滤波器(Filter),以保证进入转子电流波形为正弦波。

  对向DFIG转子供电的变频器的要求是,所供电流的频率和幅值都是可变和可控的。

 2 变频器仿真用结构图

图3为输出电压频率、幅值可变的变频器仿真用结构图,它代表PWM 控制的三相交-直-交变频系统。系统输入为三相50Hz的工频电源,经采用SPWM 整流器Universal Bridge1的整流,输出直流电压经电容器滤波,再进入可以外控电压频率和幅值的三相SPWM 逆变器Universal Bridge,逆变成交流,再经由L 和C1组成的滤波器滤波后,接到三相阻性负荷Load上。

此外还接有测量进线电流和负荷电压总畸变率THD的仪表,以及测量各点电气量波形的仪表、示波器Scope等。应该指出的是上述仿真用元器件均取自Simulink的SimPower Systems工具箱。

  在Sim Power Systems 工具箱中取出的PWM 发生器PWMGeneration存在着两种工作方式,即内部设定式和外部控制式。

内部设定式在运行前需要设置:

1)工作模式,如单臂,双臂和3 臂桥式等;

2)载波频率fc;

3)调制系数m;

4)输出电压频率;

5)输出电压初相角。

可看出这时输出电压频率、电压的大小(调制系数m)一定,无法在模型仿真过程中改变。在外部控制式下,需设置的是内部设定式的前两项,而输出电压频率f和调制系数m 都允许外控。

图4为本文中提出的针对3 臂6

脉冲逆变器的外控子模块(A)和其展开图(B)。由此可看出输出电压频率f和调制系数m是可控的。输出电压初相角,在运行过程中不能也不需调节,在这里3个初相角可由3个正弦波发生器事先设置好。将外控子模块输出Out1,接到设置为External的PWM发生器的输入端子,便可实现变频器在运行中实时控制输出电压频率和幅值变化的仿真。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top