微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 变频器的微浪涌电压抑制技术

变频器的微浪涌电压抑制技术

时间:06-21 来源:互联网 点击:

  3.2.3 从传输线理论得出的浪涌抑制原理

  根据传输线理论,浪涌抑制使用了浪涌吸收、浪涌减衰、浪涌抑制线的反射降低的方法。
员)浪涌吸收浪涌是高频波成分,低阻抗的浪涌抑制线接在电机接线端子上,让浪涌电流流到抑制线里面去,如图16所示。

  浪涌减衰浪涌电流是高频波成分,根据集肤效应,浪涌电流集中在导线外表面,因导线外表镀高电阻率材料镀层,故浪涌电流的能量在电阻上被消耗了,如图17 所示。

  浪涌抑制线的反射降低浪涌电流的高频分量在浪涌抑制线内被旁路和衰减,使浪涌形状变钝,浪涌频带中心向低频方向移动。又从浪涌电流来看,好像浪涌抑制线的特性阻抗逐渐变高了,使得抑制线末端不易被反射回来。如图18所示。

  3.2.4 抑制效果

  图19 是变频器的电源电压为400 V,3.7 kW的电机、接线长度50 m,和75 kW的电机、接线长度100 m时抑制微浪涌电压的效果。对于3.7 kW的电机,当没有浪涌抑制组件时,微浪涌电压为1 036 V,相当于变频器内部的直流电压540 V的192%;当加了浪涌抑制组件时,50 m电缆的峰值电压为733 V,相当于变频器内部的直流电压540 V的136%。电压尖峰差距303 V,有61%的抑制效果。对于75 kW的电机,当没有浪涌抑制组件时,微浪涌电压为1 040 V,相当于变频器内部直流电压520 V的200%;当加了浪涌抑制组件时,电缆的峰值电压为785 V,相当于变频器内部直流电压520 V得151%。电压尖峰差距255 V,有49%的抑制效果。

4 结语

  针对实际应用变频器时,产生的微浪涌现象对电机的危害,介绍了微浪涌抑制技术及其原理,以实例对比了不同抑制器的抑制效果,以期引起变频器生产厂家和用户对这一问题的关注。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top