微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 应用于锁相环的脉宽调整电路的设计

应用于锁相环的脉宽调整电路的设计

时间:01-01 来源:EDN 点击:

证信号的相位互补,我们对正相路径的负载增加MOS电容,通过增大正相路径延时来达到互补的要求。 脉宽调整电路中的另一个模块是脉宽电压转换器,它的功能是产生与脉宽成线性关系的电压信号。本设计中采用两个对称的转换器实现对压控脉宽调整器输出互补信号的脉宽比较。如果输出时钟是50%占空比,其互补信号脉宽基本一致,则两转换器的输出电平也是基本相同的。由于考虑的是电压相对值,因此脉宽电压转换过程中产生的一些非理想因素,比如充放电流不匹配、电荷共享等,可以忽略。该转换器的基本原理是由脉宽控制电流源对电容充放电。在脉宽比较极端的情况时,该电路也能够正常反映当前信号占空比的正确关系。

系统中另一个模块是电压比较器,它在整个负反馈系统中起着重要的作用。本设计中采用跨导运算放大器OTA对脉宽电压转换器输出的电压值进行比较,并产生压控脉宽调整器所需的控制电压VC,构成整个系统的负反馈回路。该OTA需要较高的直流增益和较大的带宽。为了更好地保证整个环路的稳定性,放大器采用一级折叠共源共栅结构。图5为该放大器的电路图。

图5 折叠共源共栅跨导运算放大器

当压控脉宽调整器输出信号具有约50%占空比时,转换器的输出电压维持在较小的值(考虑充放电荷大致相同),因此,采用PMOS管作为放大器的差分输入符合输入范围的要求。为了扩大输出范围,放大器采用了宽范围Cascode电流镜作为有源负载。

经过仿真可得,该放大器直流增益达65dB,完全满足系统要求。为了保证反馈环路稳定以及减少控制电压上的纹波(ripple),放大器的负载电容应取得较大一些,以降低主极点频率。考虑面积方面的因素,该电容可以采用NMOS电容,这种电容的单位面积电容值比其他类型的集成电容都要大的多。该电容的缺点是电容值受工艺、电压等因素变化较大,而且漏电随栅氧化层厚度减小而增大,但在此处做相位补偿和滤波之用,可以忽略这些缺点。

整个系统中最重要的是系统环路稳定性的问题,该闭环系统的环路增益是:Loop gain="1/"(1+s/p1)×A0/(1+s/p2)只要放大器的负载电容足够大(大约30pF),就可以使环路有足够的相位裕度保证整个闭环系统的稳定。典型的二阶系统控制电压稳定曲线如图6所示。在脉宽电压转换器中,我们可以采用类似于电贺泵的电容充放电结构,也可以采用本次设计中采用的简单低通滤波器结构。考虑到这两种结构所引入的极点p1的位置不同,因此后者更加容易稳定。

图6 典型的二阶系统控制电压稳定曲线


该系统在SMIC 180nm数字工艺下,采用Cadence公司的Spectre仿真器通过仿真,工作频率范围100MHz~1.5GHz,稳定时间约在1~3μs,有效输入占空比为30%~70%,输出占空比误差在0.5%之内,基本满足了宽范围应用中所需的50%占空比设计要求。

该系统的误差主要来自环路有限的增益以及控制电压上的纹波抖动。另外,保证压控脉宽调整器足够的范围和线性度,都对提高系统的性能有重要的作用。因此在压控脉宽调整器中采用VCDL结构比直接采用脉宽伸缩电路有优势,但脉宽伸缩结构实现更为简单。

编辑:博子

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top