基于FPGA的脉冲耦合神经网络的硬件实现
时间:09-12
来源:互联网
点击:
此外,由图4和图5看出,神经元1、2、3、4、5、8、9在几次迭代后输出始终为“1”,这是由于神经元的内部活动项始终大于阈值。而由于神经元6和7的图像输入值较小,内部活动项部分和阈值部分不断变化,使得在周围神经元的作用下,呈现周期性的“0”和“1”输出。
5 结论
本文根据脉冲耦合神经网络具有并行计算的特点,提出了一种基于FPGA的神经网络硬件实现方案。利用Verilog硬件描述语言完成了系统模块的设计,构建的PCNN神经网络
在FPGA开发平台上进行了验证。通过处理简单的3x3图像,并观察VGA显示结果,完成了PCNN的FPGA实现,达到了设计要求,图像处理实时性较好。下一步将研究构建更复杂的PCNN网络结构,以处理更大的图像数据。
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 基于FPGA的快速并行FFT及其在空间太阳望远镜图像锁定系统中的应用(06-21)
- 3DES算法的FPGA高速实现(06-21)
- 用FPGA实现FFT算法(06-21)
- FPGA的DSP性能揭秘(06-16)
