基于ADF4111的数字锁相式可调频率源实现
频率合成技术是指能由一个高稳定度和准确度的标准参考频率,经过一系列的处理,产生大量离散的具有同一稳定度和准确度的信号频率输出,并且输出信号的频率可由数字信号控制改变,它主要的应用是为上/下变频的中频或射频信号提供本振。频率合成的基本方法有三种:直接频率合成、锁相式频率合成以及直接数字频率合成。锁相式频率综合器是现今应用最为广泛的一种频率综合器,它具有输出频率范围大,杂散抑制特性好的特点。
在短波数字接收系统中,从天线端接收到的短波信号与本振信号混频得到70 MHz中频,之后对中频信号进行带通采样。本振信号的稳定性和准确度对系统性能有着重要和直接的影响。本文采用频率合成技术,应用ADl公司的频率综合器ADF4111和Altera公司的FLEXlOKE系列FPGA实现频率稳定,精度高,范围为70~90 MHz,步进间隔1 MHz的数字锁相式频率源本振。
l 锁相环基本原理
锁相环(PLL)是一种建立在相位负反馈基础上的循环控制系统,如图1所示。一个锁相环由以下四部分组成:
(1)R分频因子,鉴相器(Phase Detector),充电泵(Charge Pump)。
(2)环路滤波器,一般是低通滤波器,其作用是对充电泵的电流输出进行滤波,以驱动压控振荡器,其传输因子为Z(s);
(3)压控振荡器,有一个频率灵敏度Kv/s;
(4)反馈分频因子N。
它以一个高准确度,稳定度的晶体振荡器的R分频作为输入参考频率,该输入参考频率作为鉴相器的基准与压控振荡器输出的进行比较,产生一个对应于两个信号相位差的电流脉冲。该电流脉冲经环路滤波器积分产生一个控制电压,并滤除其中的高频分量和噪声,这个电压驱动压控振荡器(VCO)的输出频率增加或减少。当环路锁定时输入参考频率与压控振荡器输出的N分频的频差为零,相位差不再随时间变化。这时控制电压为一固定值,环路进入锁定状态。
当输入的参考时钟fREFIN,压控振荡器的输出fVCXO两个频率分别经R和N分频后的频率和相位均相同时,鉴相器的输出e(s)为O,此时环路将处于锁定状态。由方程e(s)=FREFIN/R-FVCXO/N可以推导出,当e(s)=0时,fREFIN/R=FVCXO/N,即FVCXO=NFREIN/R。
锁相式频率综合器将R,N分频因子、鉴相器、充电泵集成于一个芯片内,对相位噪声和杂散等具有很好的抑制作用,而且调试简单。它作为通信、雷达、遥测遥控、电子侦察等系统中的核心部件,是保证整个电子系统性能的关键因素之一,因而目前被广泛应用于电视、仪表、通信等许多领域。
2 数字锁相式频率源设计方案
根据系统需求,数字锁相式频率源设计指标主要为:输出频率为70~90 MHz;步进间隔为1 MHz;输出功率为9 dBm。为了满足这三个主要指标,设计从以下三方面考虑方案的设计和器件的选用。
2.1 输出频率
为了得到输出范围为70~90 MHz的高精度频率,设计中采用ADI公司推出的高性能锁相频率综合器芯片ADF4111,其RF回馈输入的最高频率为1.2 GHz,即为锁相环路可得到的最大输出频率,满足本设计频率输出范围要求。该芯片可用于无线射频通信系统基站、无线局域网、手机,以及通信检测设备中。它主要由四部分构成:
(1)低噪声鉴频相器(PFD)。
(2)精密充电泵(Charge Pump)。
(3)可编程预置分频器。主要由三个可编程计数器组成:A计数器(6位)、B计数器(13位)、双模预置分频器(P/(P+1),P为预置分频器的模),这三类计数器执行VCO输出频率到PFD的N分频,实现N=BP+A的运算;其中双模预置分频器有四种工作模式:8/9,16/17,32/33,64/65;
(4)参考分频器(R计数器,14位)。
使用时需要配置寄存器,寄存器配置除了配置芯片工作方式外,主要是设置输入时钟分频因子R和VCXO输入分频比A,B,使鉴相器的两个输入时钟相等。VCXO输出的时钟与输入时钟关系为:FVCXO=[(P×B)+A]FREFIN/R。式中:P为prescaler因子;FREFIN和FVCXO分别是输入的参考时钟频率和压控振荡器的输出频率。
寄存器的配置可采用FPGA控制的方法。FPGA因其集成度高、功能强大、用户可编程、体积小等特点被应用得越来越广泛。在该设计中其对寄存器的配置也显得灵活而方便。设计中选用Altera公司的0.25μmCMOS ROM工艺规程的结构的FLEX系列芯片EPFlOK50EQC240-3,FLEX系列的芯片是一种中等密度的器件,基于查找表结构,性能高,功耗低。FPGA的程序开发使用的是Altera公司的QuartusⅡ软件实现的,用AHDL硬件描述语言编写ADF4111的寄存器配置程序。
与频率综合器ADF4111构成锁相环的压控振荡器选用了Mini-circuit公司POS-100,它是一款性能优良的压控振荡器,其调谐电压范围是0~16 V,对应的输出频率范围为45~110 MHz,电压调节灵敏度为4.2~4.8 MHz/V,输出功率的典型值为8.3 dBm,从其电压一频率关系得知,当输出频率为90 MHz时,对应的输入电压在11.5~12 V之间,而当给ADF4111的模拟和数字供电端加3.3 V电压,电荷泵供电端加5 V电压时,电荷泵输出经环路滤波器后的电压最高为5 V,该5 V电压若不放大,显然无法驱动压控振荡器产生90 MHz的频率。为此,在环路滤波器后需要添置一个放大器,OP191是AD公司一款供电电压为2.7~12 V的放大器,主要应用在工业控制,电讯,远程感应等领域,将它的供电电压设计为12 V,可以使其输出电压最高达到12 V,能够满足压控振荡器输出频率为90 MHz的调谐电压输入要求。
2.2 频率步进
实现频率步进的方法是通过改变频率综合器ADF411l的寄存器配置值,从而调整压控振荡器的输出频率以达到环路的锁定,最终实现压控振荡器输出频率的步进。
频率的步进既要使VCO输出频率升高又能使其降低,故设计中,采用两个按键分别发起升高和降低的指令要求,并通过FPGA用AHDL编程实现相应的对ADF411l寄存器配置的指令。
2.3 输出功率
根据信号流程,压控振荡器POS-100的输出分为两路:一路反馈于ADF4111,另一路作为本振输出。此时,压控振荡器的输出需要经过一个T型网络分成两路,这里T型网络是一个电阻分路器,如图2所示。它广泛应用于一个源需要驱动两个负载的情况,其目的是进行电路的阻抗匹配。常用三个18 Ω的电阻值连成Y型。如果其中的一个负载为50 Ω,它就相当于衰减6.3 dB的T型网络。
- 小数分频与快锁芯片ADF4193的原理与应用(11-08)
- 如何设计并调试锁相环(PLL)电路(03-25)
- 基于ADF4106的锁相环频率器研究与设计(09-17)
- 使用ADF4007的6.7GHz本地振荡器电路(08-22)
- 利用低噪声LDO 调节器 ADP150 为ADF4350 PLL 和VCO 供电,以降低相位噪声(05-10)
- ADF4157在数字预失真时钟方案中的应用(02-23)