微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 大功率高频电镀电源的软开关技术分析

大功率高频电镀电源的软开关技术分析

时间:08-18 来源:互联网 点击:

  • 或副边加辅助电路来实现。

      全桥ZVZCS移相变换器按照辅助电路位置分为两类。第一类变换器的辅助电路位于主变压器一次侧,通过引入一个阻断电压源,在续流期间将原边电流复位至零。第二类变换器的辅助电路位于二次侧,通过引入反向阻断电压源并反射到原边,实现续流期间对原边电流的复位。

      1)原边辅助电路型ZVZCS典型拓扑原边辅助电路型ZVZCS典型拓扑大致有以下几种:

      (1)在原边串联阻断电容和饱和电感。如图4所示。在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流迅速复位,为滞后臂开关管创造零电流开关条件,并利用饱和电感在退饱和区域阻抗极大的特性切断阻断电容反向电流。此种方法应用最广泛,但也存在一些不足,饱和电感的设计和磁性元件的选择比较困难,饱和电感工作在饱和到不饱和的交替中,磁芯发热严重。而且若饱和电感按照最大输入电压设计,在低压输入时,副边占空比丢失较为严重。

      

      (2)在滞后臂开关管支路上串联二极管,以二极管反向阻断特性来阻止电流反向流动。与图4所示原边串联饱和电感的电路相比,图5所示的电路最显著的优点就是没有饱和电感,因而降低功耗,同时占空比丢失减小,也有助于展开占空比。但是这种电路也引入了新的问题,如串联在滞后臂的二极管在大功率变换器中要流过较大电流,其开关虽是ZCS,导通损耗却不可忽略。

      

      (3)原边串联双向有源开关。在原边串联双向有源开关来阻止反电动势形成的反向电流。该电路目前很难得到实际应用。另外,由于有源器件的存在,增加了控制复杂性。

      2)副边辅助电路型ZVZCS典型拓扑副边辅助电路型ZVZCS典型拓扑大致有以下几种:

      (1)副边加简单辅助网络实现滞后臂ZCS的拓扑,如图6所示。该电路利用两只二极管和一只电容构成的简单辅助电路实现了滞后臂零电流开关,利用副边吸收电容Cs上的电压作为反电动势作用在原边,使得原边环流衰减至0,整流二极管关断,副边吸收电容不再反射到原边,而是对负载供电。因而环流不会反向增加。此电路简单,解决了电流复位和副边整流二极管电压尖峰吸收的问题,且不消耗很大的能量,效率高,占空比损失小,因此该电路具有很高的实用价值。但该电路增加了功率开关管的电流应力,超前臂实现软开关变得困难(或出现超前臂硬开通现象),Cs值选取困难。

      

      (2)利用附加绕组实现滞后臂ZCS的拓扑,提出了一种利用附加绕组的拓扑新思路,如图7所示。该电路在能量传输阶段由附加绕组给钳位电容充电,钳位电容在原边电 压下降至低于其上电压时钳住了原边电压,使环流衰减。环流衰减至0后,副边绕组的整流二极管关断,环流不会反向增加。该电路元件较少,但是也存在一些问题。如副边吸收电容不能同时用于副边整流二极管电压尖峰的吸收。而且附加绕组增加了变压器的复杂性,直接限制了该拓扑在大功率场合的应用。

      

      (3)副边有源钳位实现滞后臂ZCS的拓扑,如图8所示。在能量传输时有源开关管VTs导通,电容Cs充电,同时对二极管电压尖峰有钳位作用。超前臂开关管关断后,原边电压下降至低于电容电压,副边有源开关管的反并二极管VDs导通,原边电压被电容钳位。此后工作过程与副边简单辅助网络电路相同。

      

      由于使用了有源器件,与图6所示的采用二极管的电路相比,损耗进一步降低。特别是在低压大功率场合,有源钳位的优势尤为突出。但是应当注意到,损耗的降低是以控制复杂性增加为代价的。

      4 结束语

      为了进一步提高大功率电镀电源工作频率、效率、减小其体积,本文对比分析了大功率电镀电源ZVS和ZVZCS PWM DC—DC移相全桥变换器以及各种改进电路的工作原理,探讨了它们之间的差异和各自适用的场合。

      通过分析可知ZVS移相全桥电路存在轻负载时滞后臂实现ZVS较困难、占空比丢失与软开关条件矛盾、整流管寄生振荡等缺陷,并针对各缺陷提出了相应的拓扑电路。

      ZVZCS移相全桥电路可在宽负载范围内实现软开关,但由于其电流复位需要时间,不易实现高频,且需要改善滞后臂ZCS条件,本文从变压器原边或副边加辅助电路两个方面来实现滞后臂ZCS。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top