使用LabVIEW和CompactRIO开发腿轮混合式移动机器人
时间:12-31
来源:互联网
点击:
作者:
Pei-Chun Lin - Department of Mechanical Engineering, National Taiwan University
Shen-Chiang Chen - Department of Mechanical Engineering, National Taiwan University
Ke Jung Huang - Department of Mechanical Engineering, National Taiwan University
Shuan-Yu Shen - Department of Mechanical Engineering, National Taiwan University
Cheng-Hsin Li - Department of Mechanical Engineering, National Taiwan University
项目背景
腿部和车轮这两种方法在地面运动平台上被广泛采用。 经过漫长的演变过程,大多数陆地动物的腿部都灵活有力,并能够快速顺畅地在不平坦的天然地形上奔驰。 在另一方面,人类发明了平地上专用的运动车轮,其出色的功率效率和在平地上高速的流畅运行是腿部运动无法比拟的。
由此,来自国立台湾大学的仿生机器人实验室(BioRoLa)团队致力于设计一个腿轮混合式机器人,它结合了车轮和腿部的移动性,在平坦和恶劣环境下都能为室内室外行走提供一个移动平台。
机械设计
大多数混合动力平台上不同的轮子和腿都有不同的装置和激励器,相比这些平台,这款名为Quattroped的腿轮混合式移动机器人采用了一种转换机制,可将自身特定的一部分变形成为一个轮子或一条腿。 从几何角度来说,一个轮子通常有一个圆形轮圈,而旋转轴则位于轮圈中间。 轮圈与地面接触,而旋转轴与机器人身体上的一点相连,此点就是“髋关节”。 在一般情况下,轮式移动时轮子在平地上运动并不断旋转,车轮与地面的接触点就位于髋关节下的一定距离处。相对而言,用腿移动时腿部以周期性方式运动,在髋关节和地面接触点之间没有特定的几何配置;因此腿部在运动中的相对位置具有周期性频繁变化的特点。
基于这一观察发现,将髋关节移出圆形轮圈中心并将连续运动模式改为其他运动模式,即能达到轮模式向腿模式的转换。 这激发了我们去设计一种能直接控制圆形轮圈和髋关节的相对位置的模式,从而它既能进行轮运动又能进行腿运动。 由于圆形轮圈是一个二维的对象,实现这一目标的最直接的方法是再增加一个自由度(DOF),沿着运动方向调节髋关节相对圆形轮圈的位置。 两个自由度的运动也互相形成直角。 此外,无论是轮模式还是腿模式都能有效运行同一组的驱动功率。
机电一体化
我们采用NICompactRIO嵌入式控制系统作为机器人控制器,它包括一个400MHz的实时处理器和3M现场可编程门阵列(FPGA)。 FPGA直接连接NI C系列I/O模块,这些模块能从载板传感器和激励器获得数据。 对于模拟I/O我们采用NI 9205和NI 9264I/O模块,对于数字I/O采用NI 9401和NI 9403I/O模块。FPGA与实时处理器相连,并通过IEEE 802.11无线方式与电脑进行通讯。
机器人传感器包括:马达和功率放大器上用于健康监测的温度传感器;用于电源管理的电压和电流测量传感器;用于腿轮配置校准的霍尔(Hall)效应传感器;用于身体状态测量的6轴惯性制导仪和2轴测斜仪;用于离地间隙测量的3个红外距离传感器。全球定位系统、视觉和激光测距仪等各种传感器也被用于提高机器人的感应能力。机器人上的激励器包含8个用于驱动的直流有刷电机,2个用于前腿车轮转动的高扭矩RC伺服电机,用于轮腿切换的四个小型RC伺服电机和四个小型直流有刷电机。
软件
三个运行LabVIEW 的计算核心(PC,实时系统和FPGA)负责不同的任务。 用户操作PC,将高级指令(如机器人应该以轮模式还是腿模式运行)发送到NI CompactRIO控制器。控制器以1kHz的循环速率运行,将关于机器人健康的重要信息发送回来,并在PC上记录状态数据。 机器人软件架构包括各种状态机,每个状态代表一种机器人行为。 其他需要高速信号交换的算法以10 kHz的循环率在FPGA上运行。 包括直流电动机、编码器读数以及基于PWM的RC伺服命令的比例-积分-微分(PID)控制。
机器人通电后,我们进行电机校准,定义机器人每条腿轮上两个活跃自由度的完全几何配置。 通过匹配安装在机器人身体上的霍尔效应传感器和安装在腿轮内部磁铁的相对位置实现校准。 我们可以在腿模式或轮模式下操作经校准过的机器人,这取决于当前RIM配置(即为车轮或半圈腿模式)。 另外,我们也可以通过腿轮转换来改变腿轮配置。 机器人轮模式下的行为包括站立、行驶和入座。 站立和入座为两个瞬态状态,用以过度最初地面配置和行驶行为。 在行驶行为中,前进速度和转弯速率都连续可调。 同样,当机器人在腿模式下运作时,站立和入座行为也属于瞬时状态。 站立起来后的机器人可以执行各种行为,包括步行、小跑、跨步、跨越障碍和爬楼梯。
Pei-Chun Lin - Department of Mechanical Engineering, National Taiwan University
Shen-Chiang Chen - Department of Mechanical Engineering, National Taiwan University
Ke Jung Huang - Department of Mechanical Engineering, National Taiwan University
Shuan-Yu Shen - Department of Mechanical Engineering, National Taiwan University
Cheng-Hsin Li - Department of Mechanical Engineering, National Taiwan University
项目背景
腿部和车轮这两种方法在地面运动平台上被广泛采用。 经过漫长的演变过程,大多数陆地动物的腿部都灵活有力,并能够快速顺畅地在不平坦的天然地形上奔驰。 在另一方面,人类发明了平地上专用的运动车轮,其出色的功率效率和在平地上高速的流畅运行是腿部运动无法比拟的。
由此,来自国立台湾大学的仿生机器人实验室(BioRoLa)团队致力于设计一个腿轮混合式机器人,它结合了车轮和腿部的移动性,在平坦和恶劣环境下都能为室内室外行走提供一个移动平台。
机械设计
大多数混合动力平台上不同的轮子和腿都有不同的装置和激励器,相比这些平台,这款名为Quattroped的腿轮混合式移动机器人采用了一种转换机制,可将自身特定的一部分变形成为一个轮子或一条腿。 从几何角度来说,一个轮子通常有一个圆形轮圈,而旋转轴则位于轮圈中间。 轮圈与地面接触,而旋转轴与机器人身体上的一点相连,此点就是“髋关节”。 在一般情况下,轮式移动时轮子在平地上运动并不断旋转,车轮与地面的接触点就位于髋关节下的一定距离处。相对而言,用腿移动时腿部以周期性方式运动,在髋关节和地面接触点之间没有特定的几何配置;因此腿部在运动中的相对位置具有周期性频繁变化的特点。
基于这一观察发现,将髋关节移出圆形轮圈中心并将连续运动模式改为其他运动模式,即能达到轮模式向腿模式的转换。 这激发了我们去设计一种能直接控制圆形轮圈和髋关节的相对位置的模式,从而它既能进行轮运动又能进行腿运动。 由于圆形轮圈是一个二维的对象,实现这一目标的最直接的方法是再增加一个自由度(DOF),沿着运动方向调节髋关节相对圆形轮圈的位置。 两个自由度的运动也互相形成直角。 此外,无论是轮模式还是腿模式都能有效运行同一组的驱动功率。
机电一体化
我们采用NICompactRIO嵌入式控制系统作为机器人控制器,它包括一个400MHz的实时处理器和3M现场可编程门阵列(FPGA)。 FPGA直接连接NI C系列I/O模块,这些模块能从载板传感器和激励器获得数据。 对于模拟I/O我们采用NI 9205和NI 9264I/O模块,对于数字I/O采用NI 9401和NI 9403I/O模块。FPGA与实时处理器相连,并通过IEEE 802.11无线方式与电脑进行通讯。
机器人传感器包括:马达和功率放大器上用于健康监测的温度传感器;用于电源管理的电压和电流测量传感器;用于腿轮配置校准的霍尔(Hall)效应传感器;用于身体状态测量的6轴惯性制导仪和2轴测斜仪;用于离地间隙测量的3个红外距离传感器。全球定位系统、视觉和激光测距仪等各种传感器也被用于提高机器人的感应能力。机器人上的激励器包含8个用于驱动的直流有刷电机,2个用于前腿车轮转动的高扭矩RC伺服电机,用于轮腿切换的四个小型RC伺服电机和四个小型直流有刷电机。
软件
三个运行LabVIEW 的计算核心(PC,实时系统和FPGA)负责不同的任务。 用户操作PC,将高级指令(如机器人应该以轮模式还是腿模式运行)发送到NI CompactRIO控制器。控制器以1kHz的循环速率运行,将关于机器人健康的重要信息发送回来,并在PC上记录状态数据。 机器人软件架构包括各种状态机,每个状态代表一种机器人行为。 其他需要高速信号交换的算法以10 kHz的循环率在FPGA上运行。 包括直流电动机、编码器读数以及基于PWM的RC伺服命令的比例-积分-微分(PID)控制。
机器人通电后,我们进行电机校准,定义机器人每条腿轮上两个活跃自由度的完全几何配置。 通过匹配安装在机器人身体上的霍尔效应传感器和安装在腿轮内部磁铁的相对位置实现校准。 我们可以在腿模式或轮模式下操作经校准过的机器人,这取决于当前RIM配置(即为车轮或半圈腿模式)。 另外,我们也可以通过腿轮转换来改变腿轮配置。 机器人轮模式下的行为包括站立、行驶和入座。 站立和入座为两个瞬态状态,用以过度最初地面配置和行驶行为。 在行驶行为中,前进速度和转弯速率都连续可调。 同样,当机器人在腿模式下运作时,站立和入座行为也属于瞬时状态。 站立起来后的机器人可以执行各种行为,包括步行、小跑、跨步、跨越障碍和爬楼梯。
机器人 嵌入式 FPGA 传感器 放大器 温度传感器 电源管理 电压 电流 红外 LabVIEW 电动机 编码器 PWM 霍尔效应 相关文章:
- 基于MSP430的自主式移动机器人设计与实现(06-12)
- 如何制作一个最简单的机器人(02-23)
- 机器人技术的新进展(02-23)
- CAN总线技术在工业码垛机器人控制系统中的应用研究(06-27)
- 制作机器人常用传感器盘点(02-23)
- 基于LabVIEW构建智能的移动机器人及无人驾驶车(10-27)