遥操作机器人系统中6自由度输入设备的设计
时间:11-24
来源:互联网
点击:
3 实验
基于超声波测距技术的3-D输入设备系统主要是由三路超声波检测电路、温度补偿电路和89C51单片机数据采集系统组成。单片机通过RS232串行口把3路ncount、温度Tenv以及按键K1和K2的闭合情况传送给上位机。数据通信的波特率为19.2Kbps。数据发送格式为:

三路计数值和环境温度用两个字节表示,低位在前,高位在后;K1和K2用一个字节的低两位表示,1表示断开,0表示闭合,且bit0代表左键K1的闭合情况,bit1代表右键K2的闭合情况。上位机接收到各测量值后,根据空间解析几何法计算出输入设备在参考坐标系中的位置和姿态,完成6DOF输入设备的三维定位与定向。并根据按键K1和K2的闭合情况,确定所要实现的操作。
3-D输入设备的设计关键在于精确的距离测量。为了检验本系统测距的精确度和可靠性,我们在实验室中把超声波发射装置安装在机器人MOVEMASTER-EX的末端执行器上,这样机器人的末端执行器就相当于一个3-D输入设备,在工作平台上安装三个超声波接收器。实验时,移动机器人到任一位置,通过本系统测量超声波发射装置在空间参考坐标系中的三维位置(x,y,z)和方向(γ,β,α)(即姿态,也就是绕X、Y和Z轴的旋转角),并和末端执行器的真实位置与姿态做比较,测量值和真实值是一致的。其中,距离测量误差在满量程3m的范围内可达±0.2mm,三维位置坐标在1m3工作空间内的最大误差为±3mm。由于缺乏精确的旋转角度测试平台标准,没有进行有关旋转角度的误差试验。实验表明了这种基于超声波测距技术的6DOF输入设备的定位与定向方法的有效性和可靠性。
本文提出了基于超声波测距技术的3-D输入设备的设计原理和方法。除了可提供输入设备在三维(空间)坐标系中的位置和姿态的6个自由度信息外,还克服了传统机械式、光电式等二维(平面)输入设备,如鼠标、轨迹球易磨损,易受粉尘影响等缺点。可用于机器人操作手的空间定位与定向,3-D图形化人机交互系统的输入设备,以及虚拟现实系统中的头盔跟踪、视点导航和目标操纵等领域。具有精度高、成本低、易于实现、抗电磁干扰能力强,对光线不敏感、无电磁辐射等优点。
基于超声波测距技术的3-D输入设备系统主要是由三路超声波检测电路、温度补偿电路和89C51单片机数据采集系统组成。单片机通过RS232串行口把3路ncount、温度Tenv以及按键K1和K2的闭合情况传送给上位机。数据通信的波特率为19.2Kbps。数据发送格式为:

三路计数值和环境温度用两个字节表示,低位在前,高位在后;K1和K2用一个字节的低两位表示,1表示断开,0表示闭合,且bit0代表左键K1的闭合情况,bit1代表右键K2的闭合情况。上位机接收到各测量值后,根据空间解析几何法计算出输入设备在参考坐标系中的位置和姿态,完成6DOF输入设备的三维定位与定向。并根据按键K1和K2的闭合情况,确定所要实现的操作。
3-D输入设备的设计关键在于精确的距离测量。为了检验本系统测距的精确度和可靠性,我们在实验室中把超声波发射装置安装在机器人MOVEMASTER-EX的末端执行器上,这样机器人的末端执行器就相当于一个3-D输入设备,在工作平台上安装三个超声波接收器。实验时,移动机器人到任一位置,通过本系统测量超声波发射装置在空间参考坐标系中的三维位置(x,y,z)和方向(γ,β,α)(即姿态,也就是绕X、Y和Z轴的旋转角),并和末端执行器的真实位置与姿态做比较,测量值和真实值是一致的。其中,距离测量误差在满量程3m的范围内可达±0.2mm,三维位置坐标在1m3工作空间内的最大误差为±3mm。由于缺乏精确的旋转角度测试平台标准,没有进行有关旋转角度的误差试验。实验表明了这种基于超声波测距技术的6DOF输入设备的定位与定向方法的有效性和可靠性。
本文提出了基于超声波测距技术的3-D输入设备的设计原理和方法。除了可提供输入设备在三维(空间)坐标系中的位置和姿态的6个自由度信息外,还克服了传统机械式、光电式等二维(平面)输入设备,如鼠标、轨迹球易磨损,易受粉尘影响等缺点。可用于机器人操作手的空间定位与定向,3-D图形化人机交互系统的输入设备,以及虚拟现实系统中的头盔跟踪、视点导航和目标操纵等领域。具有精度高、成本低、易于实现、抗电磁干扰能力强,对光线不敏感、无电磁辐射等优点。
- 基于MSP430的自主式移动机器人设计与实现(06-12)
- 如何制作一个最简单的机器人(02-23)
- 机器人技术的新进展(02-23)
- CAN总线技术在工业码垛机器人控制系统中的应用研究(06-27)
- 制作机器人常用传感器盘点(02-23)
- 基于LabVIEW构建智能的移动机器人及无人驾驶车(10-27)
射频专业培训教程推荐
栏目分类