多传感器集成与融合及其在机器人中的应用
时间:10-28
来源:互联网
点击:
四、多传感器集成与信息融合在机器人中的应用
1.移动机器人和自主车
移动机器人和自主车有着广泛的应用,当它们在未知的和动态环境中工作时,将多传感器提供的数据进行融合,使环境信息得以快速的感知。移动机器人对多传感器信息集成与融合的发展起了重大的促进作用。 Hilare移动机器人将触觉、听觉、两维视觉、激光测距等传感器结合起来,使之能在未知环境中操作。Hilare移动机器人是首次用多传感器信息形成未知环境实物模型的移动机器人,使用声音和视觉传感器建立分割为定位层次的图表。视觉和激光测距得到环境中不同区域的近似三维表示,激光测距获得物体更精确的范围。使用3种不同的方法得到机器人位置的精确估计:使用标记的绝对位置定位、无外部坐标的轨迹集成、参照环境的相对位置定位。每一种方法互补校正,减少其他方法中的误差和不确定性,不同传感器产生的信息,经过集成,提供已知物体的位置和相对于机器人的定位,根据物体的特征和与机器人的距离,选择恰当的冗余传感器测量物体。每个传感器的不确定性建模为高斯分布,如果所有传感器测量的标准偏差具有相同的幅度,那么加权平均值将作为物体顶点的融合估计。
Stanford移动机器人将触觉、立体视觉和超声波传感器用于非结构化人为环境中的机器人导航,两维环境模型采用分层表示,最低层环境特征与传感器提供的数据一致,高阶层是抽象的和符号表示的环境特征。机器人定位的不确定和环境特征建模为高斯分布,随着机器人的运动,卡尔曼滤波用于传感器信息的融合。 Carnegie-Mellon大学机器人中心研制的CMU自主陆地车具有彩色TV摄像机、激光测距仪和声纳传感器,能实行多传感器信息集成与融合。并行处理是该研究的主要目标。局部环境模型中的数据具有属性数值标志。标志代表实际物体,几何定位由平面多边形组成,声纳传感器用于检测近障碍物,可用于将定位从一个坐标系统变换到另一个坐标系统的参考坐标框架,时间标记记录标志建立的时刻和接收传感器数据的时间,当由摄像机和激光测距仪在不同时刻和定位测量的距离数据融合时,每个传感器做标志的坐标框架首先变换到共同的车体框架,接着变换到时间上的同一点,数据融合的结果产生一个表示融合数据的新标志。
2.装配机器人
装配作业是机器人应用的一个复杂领域。Groen等提出了一种具有视觉、超声波、触觉、力传感器的装配机器人结构。装配过程表示为某一传感器运行的条件满足时所进入的一系列阶段,整个过程由建模为NBS分层结构控制,采用一套模块化的低层外部处理执行传感器处理、机器人控制和数据通讯等专门任务。视觉传感器用于识别不同零件和定位,腕力传感器和被动柔性装置用于高精度轴孔匹配、零件传送和放取。Karlaruhe自由移动装配机器人用于柔性制造单元中的零件传输和装配操作,它是一个具有两台PUMA260机器人的移动平台,平台具有4个独立驱动的轮子,并装有对角配置的无驱动滚子,使得它能向任何方向移动,一台摄像机用来识别两维零件。装配作业在两个腕力传感器和两个位于末端执行器上的摄像机辅助下完成,一个超声波传感器和4台摄像机完成导航。控制系统采用层次化的结构,传感模块和执行模块用一个特殊通信接口耦合的黑板系统实现,规划模块由产生一系列基本操作的进程组成,基本操作由单独的基本操作模块组成,这些模块包含执行基本操作所必须的专家知识。这样它能够执行复杂的、自主的传感器指导的任务。规划模块仅指定期望目标,而基本操作模块指定目标实现的方法。
1.移动机器人和自主车
移动机器人和自主车有着广泛的应用,当它们在未知的和动态环境中工作时,将多传感器提供的数据进行融合,使环境信息得以快速的感知。移动机器人对多传感器信息集成与融合的发展起了重大的促进作用。 Hilare移动机器人将触觉、听觉、两维视觉、激光测距等传感器结合起来,使之能在未知环境中操作。Hilare移动机器人是首次用多传感器信息形成未知环境实物模型的移动机器人,使用声音和视觉传感器建立分割为定位层次的图表。视觉和激光测距得到环境中不同区域的近似三维表示,激光测距获得物体更精确的范围。使用3种不同的方法得到机器人位置的精确估计:使用标记的绝对位置定位、无外部坐标的轨迹集成、参照环境的相对位置定位。每一种方法互补校正,减少其他方法中的误差和不确定性,不同传感器产生的信息,经过集成,提供已知物体的位置和相对于机器人的定位,根据物体的特征和与机器人的距离,选择恰当的冗余传感器测量物体。每个传感器的不确定性建模为高斯分布,如果所有传感器测量的标准偏差具有相同的幅度,那么加权平均值将作为物体顶点的融合估计。
Stanford移动机器人将触觉、立体视觉和超声波传感器用于非结构化人为环境中的机器人导航,两维环境模型采用分层表示,最低层环境特征与传感器提供的数据一致,高阶层是抽象的和符号表示的环境特征。机器人定位的不确定和环境特征建模为高斯分布,随着机器人的运动,卡尔曼滤波用于传感器信息的融合。 Carnegie-Mellon大学机器人中心研制的CMU自主陆地车具有彩色TV摄像机、激光测距仪和声纳传感器,能实行多传感器信息集成与融合。并行处理是该研究的主要目标。局部环境模型中的数据具有属性数值标志。标志代表实际物体,几何定位由平面多边形组成,声纳传感器用于检测近障碍物,可用于将定位从一个坐标系统变换到另一个坐标系统的参考坐标框架,时间标记记录标志建立的时刻和接收传感器数据的时间,当由摄像机和激光测距仪在不同时刻和定位测量的距离数据融合时,每个传感器做标志的坐标框架首先变换到共同的车体框架,接着变换到时间上的同一点,数据融合的结果产生一个表示融合数据的新标志。
2.装配机器人
装配作业是机器人应用的一个复杂领域。Groen等提出了一种具有视觉、超声波、触觉、力传感器的装配机器人结构。装配过程表示为某一传感器运行的条件满足时所进入的一系列阶段,整个过程由建模为NBS分层结构控制,采用一套模块化的低层外部处理执行传感器处理、机器人控制和数据通讯等专门任务。视觉传感器用于识别不同零件和定位,腕力传感器和被动柔性装置用于高精度轴孔匹配、零件传送和放取。Karlaruhe自由移动装配机器人用于柔性制造单元中的零件传输和装配操作,它是一个具有两台PUMA260机器人的移动平台,平台具有4个独立驱动的轮子,并装有对角配置的无驱动滚子,使得它能向任何方向移动,一台摄像机用来识别两维零件。装配作业在两个腕力传感器和两个位于末端执行器上的摄像机辅助下完成,一个超声波传感器和4台摄像机完成导航。控制系统采用层次化的结构,传感模块和执行模块用一个特殊通信接口耦合的黑板系统实现,规划模块由产生一系列基本操作的进程组成,基本操作由单独的基本操作模块组成,这些模块包含执行基本操作所必须的专家知识。这样它能够执行复杂的、自主的传感器指导的任务。规划模块仅指定期望目标,而基本操作模块指定目标实现的方法。
- 基于MSP430的自主式移动机器人设计与实现(06-12)
- 机器人技术的新进展(02-23)
- 制作机器人常用传感器盘点(02-23)
- 基于LabVIEW构建智能的移动机器人及无人驾驶车(10-27)
- 工业机器人技术(02-23)
- 基于混沌电路设计阵列触觉传感器的采集系统(03-01)
