微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 超低功耗应用中的高速隔离

超低功耗应用中的高速隔离

时间:10-11 来源:互联网 点击:
挑战低功耗的极限

ADuM140x脉冲编码方案最初是针对高数据速率而优化的,并非为了获得绝对最低的功耗。该编码方案在进一步降低功耗方面有着巨大的潜力,尤其是在直流至1Mbps频率范围内。该数据范围正是大量隔离应用所使用的范围,尤其是具有低功耗要求的应用。

基于iCoupler技术的四通道ADuM144x和双通道ADuM124x系列运用了下列创新。

1.设计以低电压CMOS工艺实现
2.对所有偏置电路进行评估,并尽可能减少或消除偏置。
3.刷新电路的频率从1MHz降至17KHz
4.刷新电路可完全禁用,从而实现最低功耗

功耗为频率的函数,如图2所示,其参照对象为ADuM140x。在启用刷新的情况下,对于ADuM140x,当数据速率为1Mbps时,刷新导致的曲线拐点清晰可见,ADuM144x则在数据速率为17kbps时清晰可见。在1kbps时,ADuM144x每个通道的典型功耗要低65倍,而在完全禁用刷新时,则低1000倍左右。


图2:ADuM144x和ADuM140x器件在VDDX=3.3V条件下的每通道总功耗。
Current per Channel (μA): 每通道电流/μA
Data Rate (kbps): 数据速率/kbps
Refresh disabled: 关闭刷新
Refresh enabled: 启动刷新

功耗的大幅下降为何有用?在以下三种应用中,传统光耦合器和数字隔离器的作用有限或者完全不可用。

4mA至20mA隔离式环路供电型现场仪表

环路供电型现场仪表(见图3)的功率预算非常有限,因为所有功率均来自4mA的环路电流。但幸运的是,该环路通常可提供足够的电压(典型值为24V),能从系统中获取大约100mW的功率。4mA时,整个应用将使用大约12V的环路电压。在这一预算范围内,一个简单的DC/DC转换器可为隔离式传感器ADC和控制器供电。


图3:环路供电型现场仪表。
Controller: 控制器
Isolation: 隔离
Signal conditioning: 信号调理
Loop+: 环路+
Loop-: 环路-

即使假定DC-DC转换器具有较高的效率且电压降压比为2:1,在3.3V条件下,一个典型的传感器前端可使用的电流不足4mA,环路端的功率预算与之大致相当。主接口为连接ADC的SPI总线。隔离式接口的每一端,以及所有控制器ADC和信号调理元件均由环路供电。表2展示了一种4线SPI总线在每种隔离技术下的功耗情况。SPI 1为隔离的环路端电流,SPI 2为所需要的传感器端电流。在隔离接口的每一端,光耦合器需要消耗的功率比功率预算高许多倍。

表2:100kbps隔离式SPI接口每侧的总功耗


容性数字隔离器会消耗现场仪表的全部功率预算。一种可能性是选择ADuM1401,但系统其余部分的功率预算很小,即使是仅支持连接ADC的单个SPI接口。基于iCoupler技术的新型超低功耗数字隔离器ADuM1441的功耗非常低,仅占功耗预算的很小一部分。该技术不仅允许应用在其功率预算内正常工作,同时还允许添加第二个四通道隔离器,以支持一个HART调制解调器接口和一个智能前端控制器,如图中虚线部分所示。功耗超低的iCoupler技术可实现以前在隔离应用中无法实现的新功能。

以太网供电I2C通信总线

以太网供电(POE)等电信类应用从电压相对较高的供电轨中获得功率,该供电轨为以太网供电。控制通信接口必须从隔离式DC/DC转换器获取功率,或者通过一个调节器从-54V总线电压取得功率。在图4所示例子中,用于I2C控制总线的3.3V通信接口电压由POE控制器内置的一个调节器产生。表3所示为在POE控制器端运行I2C总线接口所需要的电流,以及POE控制器为支持每种技术而消耗的功率。


图4:以太网供电I2C通信总线。
Isolation: 隔离
Regulated Power: 调节后的电源

表3:POE应用中隔离技术的总功耗


光耦合器解决方案会在芯片中产生半瓦特的热量,而该芯片很可能已接近其热极限。表中从上向下,每种接口的表现均略好于前一项,最后是功耗超低的ADuM1441,其功耗约为1mW。如此一来,该接口的热负载在这种芯片中显得微不足道。即使电源未在POE芯片内部调节,该功耗也非常低,可以使用一个简单的齐纳二极管和电阻,从而使节能元件的成本和冷却负载达到合理水平。该技术简化了电源架构。

电池供电式医疗传感器

超低功耗的第三个用途是支持持续长时间的电池供电应用。面向家庭健康监护的医疗器械(如血糖仪、脉搏血氧仪)必须采用特殊结构,以在接触病人的同时,还能连接非医疗级的计算机(见图5)。必须为串行接口供电,并能在连接计算机时唤醒设备,因此,待机电路中应采用一个有源隔离器。在这种情况下,借助ADuM1441的刷新禁用特性,可使器件从电池吸取的电流低于4μA。对于如此低的功耗水平,即使是一枚纽扣电池也可使待机电流维持数年时间。


图5:电池供电式医疗传感器解决方案。
Computer: 计算机

另外,得益于ADuM1441超低的功耗,还可方便地为隔离组件面向计算机的一端供电。由于接口运行只需几μA的电流,因此,可以在串行接口中专门用一条状态线为隔离器供电,这样,就不需要专用电源了。

表4展示了光耦合器以及各种数字隔离方案在待机模式下的部分属性,。请注意,如果选择了正确的空闲状态,PIN/晶体管隔离器的待机电流实际上可以像基于iCoupler的超低功耗产品一样低。许多应用即利用了光耦合器的这一属性来实现超低待机功耗。然而,一旦开始通信,功耗即会跃升至相对较高的水平,ADum1441解决方案就不会这样。

表4:隔离器的低速和空闲总功耗


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top