微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 如何确定嵌入式设计可接受的抖动水平

如何确定嵌入式设计可接受的抖动水平

时间:04-15 来源:互联网 点击:
作者: Dean Smith

时钟抖动有几种不同的类型和测量方法,以及相应的规格指标,但大多数硬件设计人员没有时间去研究这些,因为对于电路板设计师而言,时钟抖动规格指标的细微差别似乎是微不足道的琐碎之事。设计师往往更把精力集中在眼前较重大的设计任务,以优先级顺序这些是针对FPGA逻辑、微处理器综合体、数据层面交换结构、控制层面交换架构、RF信号链路、电源、互连互通问题、设计仿真、建模等设计任务。

因此,设计人员必须假定来自各个芯片厂商的参考时钟抖动规格指标与他们预期使用的这些器件相关,并且这些规格指标已经被完全和正确地确定。

但如果没有一些基本准则可循,设计师可能会指定过高的时钟抖动要求,导致采用更昂贵的时钟器件并增大不必要的物料成本(BOM)。或者出现更糟糕的情况,针对某特定应用,把时钟抖动要求降低,相应的错误可能会超出给定应用可接受的误差率水平。这种情况只能在产品开发周期后期在对最初原型板进行性能指标测试时才可以发现,因此很可能会影响最终产品的发布时间。

最根本的检查点

设计师要考虑的第一个也是最根本的检查点是确定针对特定应用最相关的时钟抖动类型。表1总结了根据应用类型的一些抖动分类,以及相应的规格指标限定。

表1:与应用相关的抖动。


周期抖动是可以最直观理解的抖动类型,它简单地指与周期理想值(或平均值)的偏差,是同步接口和逻辑设计相关的抖动类型,应用案例包括与同步存储器端接的微处理器接口,或FPGA内部的同步状态机设计。

随着时钟周期缩短或扩大,可以对同步设计的建立时间或者保持时间产生巨大影响,这也是为什么周期抖动与这些类型的应用相关的原因。

高频抖动,尤其是相邻周期(C2C)抖动,是与扩频时钟相关的抖动类型。扩频时钟有意诱发低频抖动来减轻电磁干扰(EMI),这些都是传统上消费电子产品所担心的。但是,由于扩频是低频率抖动,它不会影响相邻周期抖动测量。出于这个原因,相邻周期抖动规格指标可用于量化扩频时钟的抖动性能。

仔细分析频域抖动


重要的是要特别注意频域抖动以及它在高速串行通信中的适用性。具体来说,针对高速串行/解串器(SerDes)设计的参考时钟抖动要求应该详尽。频域抖动是最不被理解的抖动类型,因此也最容易导致出现一些常见的电路板设计缺陷。

图1所示为一个通过频谱分析仪生成的相位噪声(PN)曲线,频谱分析仪可捕获时钟信号的频谱内容,因此有助于了解时钟抖动的频率特性。这对于说明相位扰动的随机性也很有帮助,相位扰动的随机性意味着随机频率扰动,并且这反过来又意味着随机周期扰动。


图1:相位噪声(PN)曲线常用来表示频域中的时钟抖动。

因此,PN曲线代表的是随机时钟周期抖动,但是在频域。从数学上看,它是时钟信号的噪声(即抖动)相对于在特定基频频率偏差下的时钟基频F0的强度。

在特定频率偏差下的抖动强度可以表明该抖动值多长时间发生一次,因此一个PN曲线表明一个特定的随机频率偏差多长时间发生一次。抖动强度与载波的比值以dBc/Hz表示,dBc/Hz值越低越好,意味着更小的抖动强度。

均方根(RMS)相位抖动是由PN曲线外推得到的抖动量化值,它不能与时域抖动规格指标的RMS周期抖动混淆。转换的RMS相位抖动值在很大程度上是一个积分函数,其值取决于根据该PN曲线下的区域面积。

但是这个面积需要由一个积分区间来界定,或者被通常称为“遮罩(Mask)”。Mask是与特定应用的传递函数而相关联,其目的是限制或阻止抖动量化值在一个频率范围内,该应用的传递函数不再进行过滤。这意味着,任何RMS相位抖动要求必须由所关注的积分范围限定。

一个PN曲线,以及相应的RMS相位抖动量化值,是串行/解串器(SerDes)应用相关的时钟抖动类型。同步数字体系(SDH)、同步光纤网络(SONET)、以太网、PCI Express(PCIe)、串行RapidIO(SRIO)和SMPTE(美国电影电视工程师协会)等工业串行标准都利用这种时钟抖动类型用于界定必要的参考时钟抖动。

作为参考,一个具有代表性的SerDes通信信道如图2所示。锁相环(PLL)是输入时钟抖动固有的低通滤波器,这样, 发射器(Tx)的SerDes时钟倍增单元(CMU)PLL用作参考时钟抖动的低通滤波器。


图2:一个具有代表性的高速串行通信信道。

此时钟的高频抖动不被转移到该PLL的输出,因此,不会对SerDes的输出抖动产生任何影响。这个Tx CMU锁相环的低通滤波器特征确定了所感兴趣积分频带的上限转角频率(corner frequency)。

以类似的方式,用于接收器SerDes参考时钟由内部接收器SerDes CMU锁相环倍乘。该时钟然后用于基于相位内插器的时钟和数据恢复(CDR)电路,其可作为参考时钟抖动的高通滤波器。

因此,这个时钟的低频抖动不会传递到用于CDR的相位对准器输出。接收器相位内插器的高通滤波器特征确定了感兴趣积分频带的下限转角频率。

所有这些效应会界定具体串行标准的SerDes传递函数,以及那些确定感兴趣的频带或者Mask,例如用于10G以太网的1.875MHz到20MHz的频带。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top