基于FPGA的SoC和嵌入式系统的远程监控系统
时间:11-09
来源:互联网
点击:
3 系统的软件结构
为了实现利用Intemet进行远程数据传输,本系统在NiosII上移植了MicroC/OS2实时操作系统和LWIP(轻量级IP协议栈)进而在其上开发信息采集软件。
3.1 MicroC/OS2及LWIP的移植
此部分工作主要是针对本系统的特定硬件进行移植并编写如温湿度传感器SHT75、总量计数IP核等所需的各种驱动,因此深入了解软件的各层结构和细节是移植成功的关键。
HAL即硬件抽象层,是NiosII开发套件的一部分,由ALTERA公司提供,它封装了系统中硬件操作的相关细节,驱动程序也作为它的一部分。HAL共抽象了六种器件模型,包括字符模式器件、定时器件、文件子系统、以太网器件、DMA器件和Flash器件,并为每一类器件提供一系列的统一的初始化函数和访问函数接口,通过这种方式,HAL向上一层提供了一个类POSIX的API接口,即硬件抽象层应用编程界面。
针对NiosII的软件开发,其实是建立在HAL之上,而非直接面向NiosII硬件本身。本系统测量模块所对应的各个接口IP核均属于字符模式器件,因此驱动程序需按HAL中字符模式器件模型来进行编写。
MicroC/OS2是一个适合于小型、微控制器的可剥夺实时操作系统。它支持56个用户任务,其内核为占先式,支持信号量、邮箱、消息队列等多种常用的进程间通信机制,通过它为应用程序提供所需的多任务环境。由于MicroC/OS2自身并没带有协议栈,因此需要移植一个TCP/IP协议栈LWIP,从而向上层提供了一个类似UNIX套接字的接口。LWIP支持以下一些网络协议:IP、ARP、ICMF、UDP、TCP。该协议栈需要20KB的代码存储空间及4KB的数据存储空问,同时在构建系统时还需要添加一个专供其使用的定时器。
图4为分析得到的系统软件的启动流程。在该流程图中,alt_sys_init()用于初始化系统中的设备,在这个过程中会调用设备驱动程序提供的初始化程序。Lwip_stack_init()用于初始化TCP/IP协议栈。而tcpip_init_done()是一个在协议栈初始化后被调用的函数,通信服务器的任务也在其中创建。有一点需要注意的是。所有基于LWIP的任务,都应该使用sys_thread_new()函数来创建,而不是直接使用OSTaskCreate()。最后,所有的初始化都准备好后,即调用OSStart()来启动RTOS进行任务调度。
3.2 信息采集程序的设计
本模块作为一个任务,运行于MicroC/OS2实时操作系统之上,完成对各个探测子系统基于策略或远程指令的测量控制,获取的信息被保存到指定的内存缓冲区,并根据要求将结果返回到远程主机上。对于温湿度测量,由于SHT75传感器的湿度输出呈一定的非线性,为了获取准确数据,需要根据给定的公式对所获得的数据进行修正,而温度输出则不需进行补偿,将数字输出转换为实际温度值即可,详见SHT75数据手册。对于总量计数的处理,本模块只是简单地将数据打包后交给通信服务器传回远程主机。
3.3 通信服务器
本任务通过sys_thread_new()函数创建,作为一个服务器监听约定的端口,等待远程主机的连接,提取远程主机的命令,通过消息队列将所获得的命令发送到信息采集任务;同时也根据要求将信息采集任务获得的各种数据分类发回远程主机。
LWP提供了标准的Berkeley套接字编程界面,这个界面提供了三种类型的套接字,在这里使用了流式套接字,这是一个面向连接的可靠的数据传输服务,也就是说使用的是TCP协议。通常,服务器接收到并发服务请求,要激活一新进程来处理这个客户请求,但出于系统资源和简化设计的考虑,在这里服务器同一时刻只能接受一个连接请求,而这种简化事实上也是可以满足设计需要的。
本系统应用基于FPGA的片上系统技术和嵌入式系统技术实现了智能核仪器与互联网的连接,同时也实现了硬件上的部分可重构,根据需要增加或删除FPGA中的外设IP核即可实现系统在功能和性能上的改变。目前本系统已经在放射性样品储藏室中应用,其功能和性能均满足实际环境的要求。由于本系统的网络平台被设计成一个相对独立的子系统,因此只需开发特定的探测子系统即可应用于各种相应的需要远程监控的领域。
为了实现利用Intemet进行远程数据传输,本系统在NiosII上移植了MicroC/OS2实时操作系统和LWIP(轻量级IP协议栈)进而在其上开发信息采集软件。
3.1 MicroC/OS2及LWIP的移植
此部分工作主要是针对本系统的特定硬件进行移植并编写如温湿度传感器SHT75、总量计数IP核等所需的各种驱动,因此深入了解软件的各层结构和细节是移植成功的关键。
HAL即硬件抽象层,是NiosII开发套件的一部分,由ALTERA公司提供,它封装了系统中硬件操作的相关细节,驱动程序也作为它的一部分。HAL共抽象了六种器件模型,包括字符模式器件、定时器件、文件子系统、以太网器件、DMA器件和Flash器件,并为每一类器件提供一系列的统一的初始化函数和访问函数接口,通过这种方式,HAL向上一层提供了一个类POSIX的API接口,即硬件抽象层应用编程界面。
针对NiosII的软件开发,其实是建立在HAL之上,而非直接面向NiosII硬件本身。本系统测量模块所对应的各个接口IP核均属于字符模式器件,因此驱动程序需按HAL中字符模式器件模型来进行编写。
MicroC/OS2是一个适合于小型、微控制器的可剥夺实时操作系统。它支持56个用户任务,其内核为占先式,支持信号量、邮箱、消息队列等多种常用的进程间通信机制,通过它为应用程序提供所需的多任务环境。由于MicroC/OS2自身并没带有协议栈,因此需要移植一个TCP/IP协议栈LWIP,从而向上层提供了一个类似UNIX套接字的接口。LWIP支持以下一些网络协议:IP、ARP、ICMF、UDP、TCP。该协议栈需要20KB的代码存储空间及4KB的数据存储空问,同时在构建系统时还需要添加一个专供其使用的定时器。
图4为分析得到的系统软件的启动流程。在该流程图中,alt_sys_init()用于初始化系统中的设备,在这个过程中会调用设备驱动程序提供的初始化程序。Lwip_stack_init()用于初始化TCP/IP协议栈。而tcpip_init_done()是一个在协议栈初始化后被调用的函数,通信服务器的任务也在其中创建。有一点需要注意的是。所有基于LWIP的任务,都应该使用sys_thread_new()函数来创建,而不是直接使用OSTaskCreate()。最后,所有的初始化都准备好后,即调用OSStart()来启动RTOS进行任务调度。
3.2 信息采集程序的设计
本模块作为一个任务,运行于MicroC/OS2实时操作系统之上,完成对各个探测子系统基于策略或远程指令的测量控制,获取的信息被保存到指定的内存缓冲区,并根据要求将结果返回到远程主机上。对于温湿度测量,由于SHT75传感器的湿度输出呈一定的非线性,为了获取准确数据,需要根据给定的公式对所获得的数据进行修正,而温度输出则不需进行补偿,将数字输出转换为实际温度值即可,详见SHT75数据手册。对于总量计数的处理,本模块只是简单地将数据打包后交给通信服务器传回远程主机。
3.3 通信服务器
本任务通过sys_thread_new()函数创建,作为一个服务器监听约定的端口,等待远程主机的连接,提取远程主机的命令,通过消息队列将所获得的命令发送到信息采集任务;同时也根据要求将信息采集任务获得的各种数据分类发回远程主机。
LWP提供了标准的Berkeley套接字编程界面,这个界面提供了三种类型的套接字,在这里使用了流式套接字,这是一个面向连接的可靠的数据传输服务,也就是说使用的是TCP协议。通常,服务器接收到并发服务请求,要激活一新进程来处理这个客户请求,但出于系统资源和简化设计的考虑,在这里服务器同一时刻只能接受一个连接请求,而这种简化事实上也是可以满足设计需要的。
本系统应用基于FPGA的片上系统技术和嵌入式系统技术实现了智能核仪器与互联网的连接,同时也实现了硬件上的部分可重构,根据需要增加或删除FPGA中的外设IP核即可实现系统在功能和性能上的改变。目前本系统已经在放射性样品储藏室中应用,其功能和性能均满足实际环境的要求。由于本系统的网络平台被设计成一个相对独立的子系统,因此只需开发特定的探测子系统即可应用于各种相应的需要远程监控的领域。
嵌入式 FPGA LTE 收发器 总线 放大器 电路 MCU VHDL 传感器 相关文章:
- 基于FPGA的片上系统的无线保密通信终端(02-16)
- 基于Virtex-5 FPGA设计Gbps无线通信基站(05-12)
- 基于FPGA的DVI/HDMI接口实现(05-13)
- 基于ARM的嵌入式系统中从串配置FPGA的实现(06-09)
- FPGA按键模式的研究与设计(03-24)
- 周立功:如何兼顾学习ARM与FPGA(05-23)