微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > FPGA和CPLD > FPGA深层解析

FPGA深层解析

时间:10-09 来源:互联网 点击:
SCTL

上几节中使用的代码例子假定代码是设置在SCTL外部,并为保证执行同步数据量也同步了附加电路。SCTL是LabVIEW FPGA中一个特殊结构,生成一个更为优化的电路图,以期望达到在一个时钟(脉冲)周期内执行完所有逻辑电路分支。例如,若设置SCTL在40MHZ运行,则所有逻辑电路分支将在25ns内执行完毕。

如果在SCTL中设置前例中同样的布尔逻辑电路(如图9所示),则生成如图10所示的相应电路示意图。




图9.附有STCL的简单布尔逻辑



图10.图9所示布尔逻辑相应的电路图

很明显,这种实现方法简单多了。在Virtex-II或Spartan-3系列FPGA中,触发器间的逻辑需要至少2个4输入查找表,如图11所示。



图11.图10中电路图的双四输入查找表实现

由于Virtex-5系列FPGA有着6输入的查找表,用户可以在一个查找表中实现相同数量的逻辑,如图12所示。



图12.图10中双六输入查找表实

本例中使用的SCTL(如图9所示)设置在40MHZ下运行,这意味着在任意触发器之间逻辑电路必须在25ns内完成执行。电子在电路中传播的速度决定了代码执行的最大速度。关键路线是有最长传播延迟的逻辑电路分支,它决定了该部分电路中理论最大时钟速率。Virtex-5 FPGA上的双六输入查找表不仅减少实现给定逻辑电路所需要的查找表总数,而且减少电子通过逻辑电路的传播延迟(时间)。Virtex-5系列FPGA中的6输入查找表不仅可以减少实现特定逻辑而需要的查找表的数量,而且可以降低逻辑中电流的传输延时。这意味着,您可简单地通过选择一个基于Virtex-5的硬件指标设置相同的SCTL,追求更快的时间速度。

请查看下方白皮书的对策列表,获取更多Virtex-5 FPGA相关信息。

乘数器和DSP片



图13.乘数器功能

看起来简单的两数相乘运算在数字电路中实现起来是十分复杂的,也是极为消耗资源的。为提供相关参考,图14所示是一种使用组合逻辑电路实现4×4字节乘数器的示意图。



图14.两个4字节输入相乘的电路图

试想两个32字节的数字相乘要通过2000多步操作才能得到结果。因此,FPGA预设了乘数器电路,在数学和信号处理应用中保存对查找表和触发器使用。Virtex-II和Spartan-3 FPGA拥有18×18bit乘法器,所以两个32字节数字相乘的运算需要三个乘法器来实现。许多信号处理算法都包括连乘运算结果的功能,因此Virtex-5等高性能FPGA都预设被称为DSP片的乘数器累加电路.这些预设处理组件,也被称为DSP48片,包括25×18bit乘数器以及加法器电路,尽管您可单独使用乘数器功能。表5所示为不同FPGA系列DSP决策。
表5.不同FPGA的DSP源



块随机存取存储器(RAM)

选择FPGA时,记忆源是另一个需要考虑的关键因素。嵌入FPGA芯片中的用户自定义随机存取存储器(RAM),对储存数据设置或平行环路之间传送数值很有帮助。基于FPGA系列,您可在16或36kb组件中设置板载RAM,或者使用触发器以数组来执行数据设置;然而,对于FPGA逻辑源来说,大型数组很快就变得十分“奢侈”。由100个32字节元素数组可消耗Virtex-II 1000 FPGA中超过30%的触发器,或者占用少于1%的嵌入式块RAM。DSP算法通常需要追踪整个数据块或是复杂等式的系数,而在没有板载存储器情况下,许多处理功能在FPGA芯片的硬件逻辑电路中都不适用。图16所示为使用块RAM读写存储器的图形化功能。



图15.用于读写存储器的块RAM函数

同样,你也可以使用内存块,将一段完整周期存储为数值和索引的顺序表,为板载信号发生器存储周期性波形数据。输出信号的最终频率由检索数值的速度决定,这样您就可用此方法动态改变输出频率,而不需要输入波形中的急剧变化。



图16.用于先进先出缓冲器的块RAM功能

FPGA固有的并行执行要求逻辑电路独立元件可在不用时间脉冲下驱动。在不同运行速度下的逻辑电路之间传递数据是很棘手的。使用先进先出(FIFO)缓冲器时,板载存储器可用来是传输更加平稳。如图16所示,用户可以将FIFO缓冲器配置成不同大小以确保数据在FPGA芯片的非同步部件间不会丢失。表6所示为嵌入不同FPGA系列的用户可设置快RAM。

表6.不同FPGA的记忆源



总结

随着高端技术的发展以及新概念的深入概括,FPGA技术地采用将不断增加。然而探究FPGA其中奥秘,感叹这硅片中在方框图间汇编出的变化,也是十分重要的。在发展阶段,如果您懂得如何利用和优化资源,比较和选择触发器、查找表、乘数器和块RAM等硬件指标是十分有帮助的。这些基本的功能块并不是包含所有资源的完整清单,而且这篇白皮书并没有包含对所有FPGA部件的讨论。用户可以通过下面的推荐资源,继续学习关于FPGA和数字硬件设计的知识。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top