基于FPGA的16QAM调制器设计与实现
时间:06-21
来源:互联网
点击:
2.6 载波正交变换
本设计中,16-QAM调制器中的载波正交变换并不是在FPGA中实现的,而是采用数字上变频器代替。这是因为调制系统的中频载波为36.864 MHz,经过内插滤波后,该输出信号频率可达百兆赫兹以上,这样的频率会使FPGA无法稳定工作。为此,本设计采用了专用DDS芯片AD9857来保证FPGA能够正常稳定的工作。
3 硬件测试
本没计的测试结果如图4和图5所示。从图4可看出:在系统码元之间,相位跳变分明,所得到的波形就是实际的调制波形。图5为信号频谱图,纵坐标每格10 dB,横坐标每格300 kHz,信号带外衰减大于30 dB。由图5可知,该系统的带宽大约为200 kHz,能完全满足预期设计要求。
4 结束语
多进制正交振幅调制由于具有很高的频谱利用率,而被广泛应用在中、大容量数字微波通信系统的载波键控方式之中。特别是当MQAM在未来4G移动通信采样以OFDM为主导技术的基带调制中,它将成为实现大容量的重要调制技术。本文利用EDA技术来实现16QAM调制器的设计是现代数字通信与EDA技术相结合的一个典型应用,这种电子设计的自动化方法也必将在数字通信领域得到广泛的应用。
本设计中,16-QAM调制器中的载波正交变换并不是在FPGA中实现的,而是采用数字上变频器代替。这是因为调制系统的中频载波为36.864 MHz,经过内插滤波后,该输出信号频率可达百兆赫兹以上,这样的频率会使FPGA无法稳定工作。为此,本设计采用了专用DDS芯片AD9857来保证FPGA能够正常稳定的工作。
3 硬件测试
本没计的测试结果如图4和图5所示。从图4可看出:在系统码元之间,相位跳变分明,所得到的波形就是实际的调制波形。图5为信号频谱图,纵坐标每格10 dB,横坐标每格300 kHz,信号带外衰减大于30 dB。由图5可知,该系统的带宽大约为200 kHz,能完全满足预期设计要求。
多进制正交振幅调制由于具有很高的频谱利用率,而被广泛应用在中、大容量数字微波通信系统的载波键控方式之中。特别是当MQAM在未来4G移动通信采样以OFDM为主导技术的基带调制中,它将成为实现大容量的重要调制技术。本文利用EDA技术来实现16QAM调制器的设计是现代数字通信与EDA技术相结合的一个典型应用,这种电子设计的自动化方法也必将在数字通信领域得到广泛的应用。
滤波器 FPGA LTE EDA Verilog 仿真 电子 自动化 相关文章:
- 数字下变频的FPGA实现(05-12)
- 用FPGA实现音频采样率的转换(02-07)
- 基于FPGA的任意时延伪码序列产生方法(04-12)
- 基于FPGA实现变采样率FIR滤波器的研究(04-13)
- 基于CPLD的CCD信号发生器的研究(04-08)
- 利用FPGA和CPLD数字逻辑实现ADC(06-04)