微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 带你深入了解调制器的特性与应用

带你深入了解调制器的特性与应用

时间:07-29 来源:亚德诺半导体 点击:

中,增益采用放大器或衰减器进行归一化,因此此处无需考虑不同系统的理论增益。

在简单的应用中,显然使用调制器优于使用乘法器,但如何定义"简单"?

调制器用作混频器时,信号和载波输入分别为频率等于f和 fc的简单正弦波,未经滤波处理的输出包含频率和 (f1 + fc) 与频率差 (f1 – fc) ,以及信号与载波奇次谐波的频率和与频率差 (f1 + 3fc), (f1 – 3fc), (f1 + 5fc), (f1 – 5fc), (f1 + 7fc), (f1 – 7fc)。经LPF滤波之后,预计仅得到基波项 (f1 +fc) 和 (f1 –fc)。

然而,若 (f1 + fc) > (f1 – 3fc),将无法使用简单的LPF区分基波与谐波项,因为某个谐波项的频率低于某个基波项。这并非属于简单的情况,因此需进一步分析。

如果假设信号包含单一频率f1,或假设信号更复杂,分布在频段f1至 f2中,则我们便可分析调制器的输出频谱,如下图所示。假设完美平衡的调制器不存在信号泄漏、载波泄漏或失真,则输出不含输入项、载波项和杂散项。输入以黑色表示(或在输出图中以浅灰色表示,哪怕实际上并不存在)。

 

图2. 输入频谱,显示信号输入、载波和奇次载波谐波

图2显示输入—位于 f1 至 f2 频段内的信号,以及频率为 fc的载波。乘法器不含下列奇次载波谐波:1/3(3fc), 1/5(5fc), 1/7(7fc)…,以虚线表示。请注意,小数1/3、1/5和1/7表示幅度,而非频率。

图3显示乘法器或调制器的输出,以及截止频率为2fc的LPF。

图3. 使用LPF的乘法器或调制器输出频谱

图4显示未经滤波处理的调制器输出(但不含7fc以上的谐波项)。

图4. 未经滤波处理的调制器输出频谱

若信号频带f1 至 f2位于奈奎斯特频带(直流至 fc/2)内,则截止频率高于2fc的LPF将使调制器具有与乘法器相同的输出频谱。若信号频率高于奈奎斯特频率,则情况更复杂。

图5显示信号频带正好低于fc时将发生的情况。依然有可能分离谐波项和基波项,但此时需使用具有陡峭滚降特性的LPF。

图5. 信号大于fc/2时的输出频谱

图6显示由于fc位于信号通带内,谐波项叠加 (3fc – f1) < (f+ f1),因此,基波项不再能够通过LPF与谐波项分离。所需信号此时必须通过带通滤波器(BPF)进行选择。

图6. 信号超过fc时的输出频谱

所以,虽然调制器在大部分变频应用中优于线性乘法器,但设计实际系统时必须考虑到它们的谐波项。

 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top