微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 超低功耗的锂电池管理系统设计

超低功耗的锂电池管理系统设计

时间:08-26 来源:维库电子市场网 点击:

  为了满足某微功耗仪表的应用,提高安全性能,提出了一种超低功耗锂电池管理系统的设计方案。该方案采用双向高端微电流检测电路,结合开路电压和电荷积分算法实现电量检测。采用纽扣电池代替DC/DC降压电路最大程度降低功耗。系统实现了基本保护、剩余电量检测、故障记录等功能。该锂电池管理系统在仪表上进行验证,结果表明具有良好的稳定性和可靠性,平均工作电流仅145μA。

  随着电子技术的快速发展,仪器仪表的应用领域不断拓宽,电池供电成为了重要的选择。电池管理系统是电池使用安全性的有效保障。目前的电池管理系统大多为大容量电池组、短续航时间的应用而设计,这种管理系统服务的设备功耗大,电池的循环时间短,管理系统自身的功耗也不低,不适合在低功耗仪表场上使用。某燃气远程监控仪表,平均系统电流仅为几毫安,要求在低温下连续运行6个月以上,为了满足该工程的应用,本文介绍了一种低温智能锂电池管理系统的设计方案,对20Ah 4串8并的32节单体电芯进行管理。具有基本保护、电量计量、充电均衡和故障记录功能。实验验证该系统各项功能性能良好,达到了设计要求。

  1. 系统的总体结构

  低温锂电池管理系统主要由基本保护电路、电量计、均衡电路、二级保护等几个部分组成,如图1所示。

  

  图1 低温锂电池管理系统结构

  基于低功耗的考虑,设计中采用了许多低功耗器件,如处理器采用MSP430FG439低功耗单片机;电压基准采用REF3325,该基准电源的功耗极低仅3.9μA;运放用了工作电流仅1.5μA的LT1495;数字电位器采用了静态电流低至50nA的AD5165等。对工作电流较大的间歇性工作电路增加了电源管理电路,以降低能耗。

  低温电池组的额定电压为14.8V,由4组电芯串联而成,每组电芯包含8节单体电 芯,正常的工作电压为2.5~4.2V。每个采集周期采集各组电芯的电压,处理器根据电压大小给保护执行电路发出指令,执行相应的保护动作。均衡电路用单片机和三极管实现,代替了均衡专用芯片。系统会把电压电流和温度的最值、电池已使用的时间、剩余电量和其他异常信息记录在存储设备内。处理器提供了TTL 通信接口,现场的计算机可以通过一个TTLRS232转换模块读取存储设备中的日志。充电过程中为了防止MCU死机等异常而出现保护失效。增加了二级保护电路,若电压超出预设值,将会启动二级保护电路,熔断三端保险丝,阻止事故的发生。

  2. 硬件设计

  2.1 保护执行电路

  保护执行电路是保护动作的执行机构,CH 是充电控制开关,DISCH是放电控制开关,通过控制CH和DISCH做出相应的保护动作,电路图如图2所示。

  

  图2 保护执行电路

  CH和DISCH在正常工作时置为低电平,此时M1和M2均导通。当出现放电过流或者过放电状态,DISCH 置为高电平,此时Q2断开,Q3导通,将M2栅极电容的电荷迅速放电,使M2能瞬间关闭,完成保护。当出现充电过流或者过充电状态,将CH置为高电平,关闭M1.电路中MOSFET选用了IRF4310,该MOSFET导通电阻仅为7kΩ,通流能力可达140A。

  2.2 均衡电路和二级保护

  图3(a)给出了某组电芯充电均衡电路的示意图,充电均衡电路由4个该种单元串联而成。由单片机采集ADV端电压,可得到该组电芯电压。充电过程中若电压超过4.2V,单片机控制脚BLA置为高电平,此时该组电芯被短路,充电电流流经R4给其他组电芯充电,由此保证各组电芯电量在充电完成后具有较好的一致性。

  二级保护是不可逆的,只有在非常危急的情况下才会启动,电路如图3(b)所示。BQ29411是一款静态电流仅2μA的二级保护芯片。任意一组电芯电压超过4.4V,OUT将输出高电平,三端保险丝F3开始加热,当温度超过139℃时保险丝就会熔 断。

  

  图3 充电均衡和二级保护电路

  3. 双向高端微电流检测电路

  在单电源供电的微小信号检测应用中,由于采样电压很小,常受制于运放的供电轨而难以完成对小信号的检测。本设计中采用了电流高端检测电路,可以摆脱单电源供电对小信号检测的限制。高端检测电路采用了凌特公司LT1495超低功耗运放,电路示意图见图4。

  

  图4 电流检测电路

此电路可以实现对双向小电流的采样放大及判定电流的方向。R9为采样电阻,考虑到短路时电流较大,其阻值一般很小,本方案中R9阻值设为25mΩ。当电池处于放电状态,假定电流源、R9和LOAD组成的环路电流方向为顺时针,此时DIR1为低电平,DIR2为高电平,M1截止,M2导通。流过R4的电流IR4=R9×IR9/R4,R5输出端的电压信号为VCUR=R9×IR9×R5/R4。当电池处

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top