微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 实现扣式锂电池设计方案及影响因素

实现扣式锂电池设计方案及影响因素

时间:01-04 来源:3721RD 点击:

        目前CLIB已商品化,主要用作小型电子产品电源,如:电脑主板、MP3手表、计算器、礼品、钟表、玩具、蓝牙耳机、PDA、电子匙、IC卡、手摇充电手电筒等产品中,寿命可达5~10年,受到了锂电池生产商的青睐。另外,CLIB较圆柱形和方形锂离子电池成本低,封口容易,设备要求简单,因此,近年来很多电池公司、大专院校和科研院所的研发部门对开发CLIB越来越重视。本文采用正交实验法(OE)优化了C/LiCoO2LIR2016型扣式电池的制备工艺,通过电化学阻抗(EIS)和充放电等测试手段研究了该电池的电化学性能,为人们深入研究和开发这类电池提供一定的依据和借鉴。

  1  实验

  1.1 LIR2016电池制备工艺

  LIR2016电池工艺研究主要包括配膏、制极片、电池装配和封口。

  (1)配膏工艺

  按照正交表1称量活性物质(正极活性物质Li-CoO2,负极活性物质为C)、导电剂SP和粘结剂PVDF进行配膏,其基本过程是:首先将PVDF加入NMP中,在50℃下恒温50min使PVDF完全溶解;然后将SP与活性物质在磁力搅拌器下干混10min,使其混合均匀并在干燥箱中干燥;最后将干混材料SP与活性物质加入已均匀溶解PVDF的NMP中搅拌20min涂膏。

  (2)极片制作工艺

  极片的制作工艺对电池的性能有很大的影响,其基本过程为:

  ①涂片,用玻璃棒把正/负极浆料分别均匀平整地涂在铝箔/铜箔上;

  ②干燥,把极片放在一定温度的烘箱中干燥,除去大量的溶剂NMP;

  ③预压片,极片在油压机上以5MPa的压力进行压片,并且在达到预定的压力后停顿10s;

  ④打片,用模具把极片冲成Φ=18mm的正负极片;

  ⑤二次压片,极片放在油压机上进行压片,达到预定的压力后静止30s;

  ⑥二次干燥,在一定温度下干燥极片,主要是除去压片、冲片和二次压片时在空气中操作所吸收的水分。

  (3)电池装配工艺

  电池装配在充满Ar气的手套箱中进行,隔膜采用Cellgard2000,电解液为1mol/LLiPF6/EC-DMC(体积比1∶1),具体装配流程如图1所示。

  1.2 电化学性能测试

  采用CHI660B型电化学工作站进行EIS(频率为10mHz~100kHz)的测试;用新威BTS5V/10mA型进行恒电流充放电性能测试(充放电电压区间为2.75-4.2V)。

  1.3 正交实验设计

  根据实验经验,分别选取4因素为:A-SP含量/%;B-PVDF含量/%;C-搅拌方式(I:磁力搅拌;Ⅱ:研磨搅拌+磁力搅拌;III:研磨搅拌+强力搅拌);D-干燥温度(I:90℃下干燥8h;Ⅱ:120℃下干燥3h;III:120℃下真空干燥3h),每个因数选择了3个水平,其设计如表1所示。


2  结果与讨论

  2.1 正交实验结果分析

  实验结果如表2所示,以极片是否掉粉为实验指标。由表可知掉粉现象较为严重,而且组装成的电池均不能放电,电池的开路电压绝大多数在零附近,放电容量和放电时间几乎为零。

  2.2 极片制作工艺研究

  掉粉是指膏体从集流体上脱落,解剖电池可以直接观察到膏粉溶解在电解液里,隔膜被染成黑色,为了解决极片掉粉的问题,对其制作工艺进行了深入的研究。从表2中可以看出,膏的配比、搅拌方式以及干燥温度和时间都对掉粉程度有直接影响,下面针对极片的掉粉情况进行工艺规范。

  (1)配膏工艺

  膏体主要有活性物质、导电剂、粘结剂以及溶剂4种物质组成。溶剂主要作用是让其它3种物质均匀混合,之后它就在干燥过程中被挥发掉。导电剂乙炔黑或SP主要是增强电极的导电性,减小电阻,其用量不是越多越好;导电剂的比表面积较大,当导电剂过多时,活性物质的用量就相对减少,从而导致电池的容量下降。粘结剂主要是用来增强膏的粘稠度以及与集流体的结合力,粘结剂的量对极片掉粉程度有很大影响。因此在保证极片不掉粉的前提下,应使活性物质的含量最多。

  由表2可知,极片掉粉少和不掉粉的是实验1、4、9(正极)和实验1、3(负极),可以看出在正极配膏中,粘结剂与导电剂含量的相关性比粘结剂与活性物质含量的相关性更大。而负极粘结剂的含量则与活性物质含量的相关性更大。正负极配膏的最佳配比分别为:LiCoO2∶SP∶PVDF∶NMP=47.6∶2.4∶2.4∶47.6(质量比)和C∶SP∶PVDF∶NMP=36.5∶1.2∶3.3∶59.0(质量比)。

  (2)搅拌工艺

  搅拌的目的是让活性物质、导电剂、粘结剂这3种物质在溶剂中得以均匀分布,以增强极片的导电性和防止极片出现掉粉现象。

实验主要采用超声波搅拌、磁力搅拌和强力搅拌3种常用的搅拌方式,另外还有手工研磨。研磨主要适用于固-固相物质的混合,使各种物质在干粉状态下混合均匀。另外3种搅拌均适用于固-液混合和固-固混合,但搅拌原理、效果有所不同。超声波能

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top