微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 关于交直流两用后备电源的设计

关于交直流两用后备电源的设计

时间:12-27 来源:3721RD 点击:

    1、引言

    通过本系统,实现了220V交流供电时仪器能够工作,同时通过以单片机为控制器的充电部分给锂电池充电,当220V交流断电时,通过切换部分,使用后备电源锂电池给仪器供电。该切换部分无需人为操作,自动切换;充电部分同样采取了智能化控制,能够完成充满后自动报警自动停止充电功能。整个系统分为三个部分:切换部分、调压部分、充电部分。系统总体结构图如图1所示。

\
图1 系统总体框图

    系统先将开关电源(5~12V)和锂电池的输出电压分别接到自动切换模块相应输入端,再将自动切换模块输出端接入电压调整模块,最后分别输出5V,12V,24V电压。

    2、切换部分的设计

    在便携式产品的设计中,有时需要给系统设计两套电源供电电路:一套是交流供电,在室内时使用;一套是直流供电,在室外时使用。这就需要解决交流和直流电源之间的电源切换问题,这个切换过程应该尽量避免用户干预。

    采用了P沟道MOSFET管IRF7406作为切换元件,主要原理图如图2所示。

\
图2 自动切换部分

    其原理是当插入交流电源时,PMOSFET的栅极电压高于其源极电压,处于关断状态,从而切断电池的连接,此时由交流电源向仪器供电。当去掉交流电源时,PMOSFET导通,由直流电源向仪器供电。MOSFET的导通电阻依赖于它的栅极偏置。当交流断开时,MOSFET的栅极电压为零,源极为电池电压,MOSFET的导通电阻应该在此偏压下足够低,保证在最大负载电流下能够获得所希望的输出电压,因此,应该尽量选用低阀值的MOSFET开关。这里选用了IRF7406 PMOSFET,该芯片VDSS=-30V,RDS=0.45Ω,非常适合本系统的需求。

    肖特基二极管D1可防止电池单独供电时电流从电池流入开关电源,因而必不可少。

    3、调压部分

    本系统需要5V,12V,24V三种电压输出,而一节Li电池的输出电压为3.6V,所以需要调整电压。本系统选用3片DC-DC变换器MC34163以分别将输出电压升压到5V,12V,24V,MC34163是美国Motorola公司生产的可以升压、降压式DC/DC变换器,与日本Sharp公司生产的IR3M03A性能相当,管脚对应,可以互换使用,其性能如下:

    (1) 输入电压2.5~40V,输出电压1.25~40V连续可调,功率1.25W,100~100kHz工作频率DIP16封装;

    (2) 可以实现电压的升压、降压、反转变换,典型效率分别为90%、80%、65%;

    (3) 有限流功能,输出开关电流可达3.0A,通过扩流可达更大。

    图3所示中,输入直流电压为25V,电阻R1和R2组成输出电压的反馈网络,反馈电压从电阻R1上取出加到片内比较器的反相输入端。若反馈电压小于片内基准电压地,比较器输出高电平,电路正常工作;反之输出低电平,片内开关管关断,使电路没有输出。

\
图3 调压部分原理图

    输出电压V-out=Vref(R2/R1+1)=1.25×(R2/R1+1),R1=2.2KΩ,R2根据输出需要计算其值的大小。图3中R4即为Rsc,为峰值电流检测电阻,Rsc的阻值越大,允许的峰值电流越小。如果要扩大电流可外接NPN或PNP型开关晶体管可使输出电流达到3.0A。Rsc最小值由公式给出:Rsc(min)=0.25/Ipk(switch)=0.25V/3.4A=0.0735Ω。

    4、智能充电部分

    这部分也是本系统的核心部分,采用MAX1898- EUB42作为充电控制器件,单片机负责充电控制和提示,完成充满自停功能和报警功能。

    MAX1898EUB42可对所有化学类型的锂电池进行安全充电。电池调节电压为4.2V,采用10引脚、超薄型uMAX封装,在更小的尺寸内集成了更多的功能,只需要少数外部元件。其基本特点如下:

    ·4.5~12V输入电压范围;
    ·内置检流电阻;
    ·可编程充电电流;
    ·输入电源自动检测;
    ·LED充电状态指示。

    1、引言

    通过本系统,实现了220V交流供电时仪器能够工作,同时通过以单片机为控制器的充电部分给锂电池充电,当220V交流断电时,通过切换部分,使用后备电源锂电池给仪器供电。该切换部分无需人为操作,自动切换;充电部分同样采取了智能化控制,能够完成充满后自动报警自动停止充电功能

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top