微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 浅谈智能化锂离子电池管理系统的设计与实现

浅谈智能化锂离子电池管理系统的设计与实现

时间:10-13 来源:21ic 点击:

运放。测量电路设计了开启和关闭的开关,在不需测量的状态下,采样电路关闭,以减少电能的损耗。在控制上选用低功耗控制策略。智能电池在充电过程、给用电器供电、显示按键按下时,MCU工作在Run 模式和Wait模式下,其余时间工作在STOP模式下,MCU工作在STOP模式时,要关闭电压测量、温度测量电路以降低电池能耗。从Stop模式进入 Run模式,需外界条件唤醒。唤醒方式采用显示按键唤醒方式、电流唤醒的方式。当显示按键按下时,CPU即由Stop模式进入Run模式;当有电流流过采样电阻时,CPU由Stop模式进入Run模式。Run模式下,10分钟内没有事件发生,MCU自动进入Stop模式。

  4系统功能方案及软件设计

  4.1功能方案

  4.1.1电池保护管理

  智能电池管理电路在电池的使用过程中,实时监控电池的电流、电压、温度、容量。智能电池管理系统通过计算,对锂离子电池实现下列保护:

  (1)充电时,当总容量超过电池规定的最大容量,充电过程中温升大于3℃/2min,充电温度≤ -20℃、≥+55℃,向智能化充电机提供告警信息,并自动切断充电输入。另外当有一个单体电池电压超过4.25V,向智能化充电机发出告警信息,并能自动切断充电输入。

  (2)放电时,智能管理电路通过对电压、电流测量及上次充电过程数据记录,防止电池过放电损坏。当智能管理电路发现电池继续放电会造成过度放电时(单体电池电压≤2.5V),智能电池发出告警信息并关闭放电输出。

  4.1.2温度管理

  温度、温升对电池的影响是不能忽视的。在使用过程中异常的温升需特别对待,特别是充电过程中大于3℃/2min的异常温升需要采取保护措施。另外温度对电池的剩余容量有显着的影响,温度是剩余容量计算、供电时间预测的重要的修正参数。

  智能电池采用多点测温对电池进行温度管理,识别电池组温度,单体电池的异常温升,环境温度巨变。智能电池按以下规则识别:

  (1)充电过程中2个测温点温度值相差不到2℃,连续的温度变化率相差不超过2℃,判别为电池组温度。其它智能设备读取的电池温度为所有测温点的平均值。

  (2)充电过程中在电池充电容量加上起始剩余容量之和大于70%额定容量时有一个测温点的温度变化率超过3℃/2min,判别为充电异常温升。

  (3)智能电池被充电唤醒后电池组温度(平均温度)变化率超过3℃/2min需试验确定,判别为环境温度巨变。

  智能电池在充电的过程中,环境温度在低于电池温度-20℃情况下电池组不允许充电,-20℃~+10℃ 不允许大电流充电,+10℃~+55℃允许大电流充电,在+75℃以上不允许充电。

  4.1.3容量的计算的方法

  容量计算的基础是测量的电流对时间的积分,计算公式为:

  Q=∫i dt

  由于68HC908单片机内部的ADC采用了∑—⊿方式,转换速度很快,以累加的方式可以实现精度较高容量计算。

  4.2系统软件设计

  智能电池管理系统软件是被写入到68HC908的FLASH 中,经过电路处理电池的电流、电压、温度模拟信号转换成数据,根据这些数据结合电池的特性,完成系统功能方案指定的功能并且可以向与智能电池和电台提供相关电池的信息。软件的硬件平台是68HC908单片机,软件的开发平台为68HC908集成开发环境。程序结构框图如图2所示:

  

  另外,智能电池提供统一的智能接口,这些智能的接口可以通过SMBus1.1协议进行访问。智能充电机、用电器可以采用相同的总线技术按照 SMBus1.1规范的协议简单、方便地访问这些接口。智能电池提供的这些接口能满足用电器及充电机向系统化、统一化、智能化方向发展要求。用电器、充电机通过读取这些信息可以知道智能电池制造、使用的全过程信息及电池当前使用的状况。

  5结束语

  本文给出了一套智能电池管理系统开发方案,阐明了管理系统的功能和实现方法。采用低功耗的设计思想,确保电路的自耗电满足电池存储的需求。充分利用 68HC908系列单片机丰富的对外接口控制功能,利用SMBus总线为用电器和智能化充电机随时提供所需的各种信息。本系统方便了用户,减少了操作,实现了智能化、一体化设计。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top