微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 一种利用实时时钟降低嵌入式系统功耗的方法

一种利用实时时钟降低嵌入式系统功耗的方法

时间:08-16 来源:飞思卡尔 点击:

  1.嵌入式CPU低功耗模式介绍

  众所周知,低功耗已经是衡量一个嵌入式系统的重要指标。而作为嵌入式系统的核心,嵌入式CPU的功耗则对整个系统起着重要的作用。当前流行的嵌入式系统CPU,基本都提供低功耗特性。一般而言,当嵌入式CPU都会有工作模式与低功耗模式,而低功耗模式又可进一步分为空闲模式,休眠模式,睡眠模式等。进入低功耗模式后,CPU的功耗会降低很多。而外部中断发生时,可以将CPU唤醒。一个嵌入式系统运行起来后,当系统进入idle状态时,就可以让CPU进入低功耗模式,而当外部中断发生时,再唤醒CPU,重新回到工作模式。让CPU尽可能多的处于低功耗模式,可以大大降低系统的功耗。然而,即使系统处于idle而且没有别的工作要做,系统实时时钟的中断,也会不停的唤醒CPU,从而增加系统功耗。因此,可以考虑对系统实时时钟的中断进行修改,从而减少对系统功耗的影响。

  2.系统实时时钟与功耗的关系分析

在目前的嵌入式系统中,系统实时时钟一般是一个硬件循环计数器。当硬件计数器计到一定数值时会向CPU发出中断。系统实时时钟是现代多任务嵌入式操作系统的重要组成部分,因此我们需要先讨论一下嵌入式操作系统与系统实时时钟的关系。当今的嵌入式操作系统一般都支持多任务,优先级和时间片调度。当嵌入式OS运行起来后,一般都有一个IDLE任务,它的优先级最低,而其他任务的优先级都应该比它高。在优先级调度机制中,只有当系统中其他高优先级任务都处于阻塞状态时,它才有机会运行。时间片调度机制只对同优先级的任务有效。也就是说,不同优先级的任务之间是不会按时间片调度轮转的,而是按优先级来调度的。因此当系统进入IDLE任务时,可以认为系统中没有工作要CPU来做,系统为idle状态。当时间片调度机制开启后,嵌入式OS就会根据时间片来调度任务。也就是当一个时间片用完后,要运行调度器来决定下一个时间片的归属。时间片的基本单位是系统tick,而系统tick是以系统实时时钟为基础的。当系统实时时钟中断产生时,CPU会将系统tick加1。每当系统tick增加n(一个时间片)时,嵌入式OS将启用调度器进行时间片调度。因此,当时间片调度机制开启后,就需要系统tick的实时更新和调度器的定时运行,也就需要实时时钟中断以很高的频率定时产生。如果关闭时间片调度机制,则任务之间只需要按照优先级来调度,这样就不需要计算时间片,也就是系统tick不用实时更新,实时时钟的中断不必以很高的频率产生,调度器也不用定时运行。这样就有可能考虑延长实时时钟的中断间隔。同时调度器不需要进行时间片调度,可以节省系统开销。但关闭时间片调度后,系统就只有优先级调度。这就要求系统的所有任务要主动阻塞,而不要期待调度器把同优先级的其他任务调度出CPU而让自己运行。在目前流行的嵌入式操作系统中,一般都提供了很多主动阻塞的机制,因此要做到这一点并不难。延长实时时钟的中断间隔,可以让CPU长期处于低功耗状态,直到有设备中断唤醒CPU。这样将大大减低系统在空闲时的功耗。延长实时时钟中断间隔后,需要考虑的问题有两个,一是系统tick,另一个是系统delay。系统tick是实时时钟和操作系统之间的接口,操作系统与时间相关的模块和API,基本都是基于tick的。在一般系统中,实时时钟的中断是每个tick一次。因此tick是操作系统最小的计时单位。延长实时时钟中断间隔后,系统tick就会长时间不增加,因此怎样保证系统tick的准确性,就是最基本的问题。解决了tick的准确性,就可以隔离实时时钟对操作系统的影响。系统delay是操作系统一种重要的阻塞机制,它主要用于让一个任务主动让出CPU一段时间。一般系统delay是基于系统实时时钟的,系统delay的基本单位就是tick。当调用delay时,API函数会首先得到当前系统tick,然后加上需要delay的时间,形成一个未来的delay时间点,再将任务挂到系统的delay队列上。因此delay队列上的所有任务都对应一个自己的delay时间点。当系统tick超过某个任务的delay时间点时,该任务就应该醒来。这就需要实时时钟的中断来唤醒CPU,并运行调度器让delay的任务重新进入就绪队列。如果实时时钟中断间隔延长,系统tick就会很长时间不增加,就很难保证delay的准确性。同时delay时间到达后,也无法唤醒任务。要保证系统tick的准确性,就要求每次主动获得系统tick时,需要通过实时时钟硬件计数器的值计算出当前的系统tick。同时,需要保证主动获取和实时时钟中断之间的同步。而对于系统delay,则需要修改硬件计数器的计数值,使其

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top