基于LabVIEW的电池管理系统监控平台开发
1 引 言
动力电池集成作为电动汽车核心技术之一对电动汽车运行的性能有着决定性的作用, 为保证动力电池安全且高效的应用, 需要对其运行状态进行实时在线的监测并同时对其进行控制, 电池管理系统在动力电池与整车控制之间起到了这样关键的桥梁作用。为保证电池管理系统为电动汽车提供准确可靠的动力电池信息并对电池进行可靠的管理, 需要对电池管理系统自身运行的各项功能进行实时的监测, 以及对电池运行数据进行采集分析, 同时在动力电池系统出现故障时需要对其进行诊断, 基于LabV IEW 的电池管理系统监控平台即是为实现上述需求而开发设计。
LabV IEW ( Labora tory V irtual INStrumentat iONEng ineeringW orkbench, 实验室虚拟仪器工程平台)是由美国N ational InSTruments(简称N I)所开发的图形化软件开发环境。该开发环境把工业测量与控制和计算机完美结合在一起, 其图形化的界面使得编程就像操作仪器面板或画电路板一样简易直观、易于理解。但为了开发可靠、高效、灵活的电池管理系统监控平台, 需要对其程序设计进行深入的原理分析、细化的结构设计、及灵活的接口实现。监控平台就利用了LabV IEW 的DLL ( dynam ic link library, 动态链接库)、多线程, 数据记录、运行控制等技术。
2 平台结构
监控平台是基于电池管理系统设计, 其主要由硬件部分和软件部分组成。硬件主要实现PC 与电池管理系统之间的通信, 因电池管理系统对外通信主要采用CAN ( Contro llerA rea Netw ork, 控制器局域网) , 而PC 端接口多为U SB (Un iversa l Ser ia l Bus, 通用串行总线)。CAN 总线由德国Bosch 公司最先提出, 是国际上应用最广泛的现场总线之一, 其具有高位速率、高抗电磁干扰性, 而且能够检测出总线的任何错误; USB是一种支持即插即用的新型串行接口,已广泛用于PC 的对外接口。解决CAN 与USB 之间的转换就解决了电池管理系统与PC 的通信, 利用周立功USBCAN - II的智能CAN 接口卡, 可以很方便的实现这一功能, 监控平台硬件正是以PC 为主体, 连接CAN 接口卡, 通过CAN 总线连接电池管理系统组成。周立功智能CAN 卡配备了PC端的驱动程序, 同时为PC 端应用程序提供了接口函数, 采用LabV IEW 开发环境中的动态链接库技术可很好的操作周立功智能CAN 接口卡, 实现与电池管理系统的通信。
由图1可见, 系统硬件实现了监控平台与电池管理系统之间数据的透明传输, 周立功智能CAN 接口卡起到了很好的桥梁作用, 其上自带的光电隔离模块使USBCAN II接口卡避免由于地环流造成的损坏, 增强系统在恶劣环境中使用的可靠性。所以监控平台有很好的硬件支持, 设计的主要工作是监控平台的LabV IEW 实现。
针对电池管理系统数据采集、参数标定、故障诊断及对电池数据分析的要求, 监控平台软件的结构应该包含信息显示、系统标定、故障诊断、数据存储及平台配置等模块(见图2)。其中信息显示功能提供了直观的动力电池信息, 包括单体电压、总电压、电流、温度、SOC及故障状态等; 系统标定功能为电池管理系统的参数设定、状态修订提供了便捷的操作; 故障诊断功能主要针对动力电池系统的维护; 数据存储功能为进一步的对电池性能的分析及对电池管理系统的功能验证提供很好的数据支持; 平台配置功能是实现监控平台接口灵活、界面友好、操作简便的关键。基于LabV IEW 的软件设计主要针对这几个方面进行。
图1 监控平台结构图
1 引 言
动力电池集成作为电动汽车核心技术之一对电动汽车运行的性能有着决定性的作用, 为保证动力电池安全且高效的应用, 需要对其运行状态进行实时在线的监测并同时对其进行控制, 电池管理系统在动力电池与整车控制之间起到了这样关键的桥梁作用。为保证电池管理系统为电动汽车提供准确可靠的动力电池信息并对电池进行可靠的管理, 需要对电池管理系统自身运行的各项功能进行实时的监测, 以及对电池运行数据进行采集分析, 同时在动力电池系统出现故障时需要对其进行诊断, 基于LabV IEW 的电池管理系统监控平台即是为实现上述需求而开发设计。
LabV IEW ( Labora tory V irtual INStrumentat iONEng ineeringW orkbench, 实验室虚拟仪器工程平台)是由美国N ational InSTruments(简称N I)所开发的图形化软件开发环境。该开发环境把工业测量与控制和计算机完美结合在一起, 其图形化的界面使得编程就像操作仪器面板或画电路板一样简易直观、易于理解。但为了开发可靠、高效、灵活的电池
- 利用LTC6801进行电池管理系统 (BMS) 的故障监视(10-19)
- 怎样构成电池管理系统(08-08)
- 纯电动车电池管理系统设计(02-14)
- 在高压电池管理系统中实现可靠的数据通信(08-03)
- 深度分析SOC精度验证方法(04-23)
- 新能源汽车BMS系统结构及关键技术解析(02-22)