兼顾高耐压与低Vce(sat)性能的650V场截止沟槽式IGBT受热捧
绝缘闸双极电晶体(IGBT)是一种少数载子功率元件,拥有高输入阻抗和高双极电流功能,这些特性使其适用于多种电力电子产品,特别是马达驱动器、不断电系统(UPS)、再生能源系统、焊接机、电磁炉,以及其他须支援高电流和高电压的逆变器(Inverter)应用。
此外,抗短路能力也是IGBT适用于各类逆变器的重要特性。在由逆变器驱动的UPS或马达中,当启动时发生马达故障、输出短路或输入匯流排电压贯穿(Voltage Shoot Through)等情形时,IGBT将会受到破坏。在这些状况下,通过IGBT的电流将急速增加直到饱和为止,在进行故障侦测及启用保护功能之前,IGBT应能承受此压力。
三级拓扑逆变器点燃650伏特IGBT需求
从逆变器设计来看,三级中性点箝位(Three-level Neutral-point-clamped)拓扑正加速普及,并扩散至中低功率电源转换器,以提供更高输出电压频谱效能,藉此缩减滤波器尺寸并降低成本,同时在不产生过多切换损耗之下,增加切换频率。
在三级NPC拓扑中,因为直流链电压(DC Link Voltage)无法获得良好平衡,故在此拓扑中需更高的阻断电压(Blocking Voltage),对此,支援650伏特崩溃电压的IGBT能有效满足此一设计需求,市场渗透率正逐渐翻扬。然而,通常较高的崩溃电压会使Vce(sat)增加,造成逆变器应用的效能降低,因此如何使650伏特IGBT的切换及导通损耗,维持与传统600伏特IGBT方案相同的程度,对晶片商和系统厂而言无疑是至关重要的努力方向。
IGBT的极间饱和电压(Vce(sat))及切换效能两者互为消长,主因係较高的崩溃电压设计所增加的Vce(sat)补偿值,可能使系统产生较大的切换损耗,因此在消长曲线中找到最佳设计平衡点,将是优化650伏特IGBT性能的关键。
为满足前述需求,新型场截止沟槽式(Field Stop Trench)IGBT遂应运而生,其具备650伏特崩溃电压、极低的Vce(sat)及抗短路能力,且效能已通过系统级评估验证。
场截止沟槽式IGBT兼具高压、低Vce(sat)效益
场截止沟槽式技术使用沟槽闸极架构,以及因应穿透特性的高掺杂n+缓衝层。由于具备前述特性,新型IGBT技术达成更高Cell密度,让特定硅面积拥有极低的导通压降;整体而言,其电流密度可较旧型场截止平面式方案多出一倍以上。
图1显示新型75安培(A)、650伏特场截止沟槽式IGBT,以及75安培、600伏特旧型场截止平面式IGBT两者的Vce(sat)与切换损耗特性比较,前者在25℃、75安培时,可达成1.65伏特Vce(sat),在相同条件下,后者则为1.9伏特。
图1 新型650伏特IGBT与旧型600伏特IGBT特性比较
一般而言,较高的IGBT阻断电压和较小的尺寸会使Vce(sat)增加,利用场截止沟槽式技术可在提升崩溃电压至650伏特的前提下,进一步缩减晶片面积,显着改善此一状况;因此,低Vce(sat)是新型场截止沟槽式IGBT的主要优点,同时还可减少在每一切换循环的关闭(Turn-off)能量损耗。
随着IGBT的电压特性有所改进,系统厂将能打造更高转换效率的逆变器,满足市场需求。值得注意的是,即使硅面积缩减,新型场截止沟槽式IGBT在因热逸散问题而故障之前,仍可提供5微秒(μs)抗短路时间,旧型IGBT则未支援此功能;此外,场截止沟槽式IGBT具备低关闭状态(Off-state)漏电流,且支援最高接面温度至175℃。
大胜传统设计方案 650伏特IGBT效能亮眼
至于新型650伏特场截止沟槽式IGBT与使用类似方案的元件相比,在条件为Tj=25℃、Ic=80安培、Vce=400伏特、Vge=15伏特及Rg=5欧姆(Ω)的切换测试中,650伏特IGBT显示的关闭(Switching-off)能量损耗为183微焦耳(μJ),600伏特IGBT的切换损耗则为231微焦耳。
评估项目还包括共同封装的二极体(Diode)反向恢復特性,测试条件为If=40安培、Tj=125℃、Vr=400伏特及di/dt=500安培/微秒,在上述条件下,场截止沟槽式IGBT的Qrr为1.17微库伦(μC),远低于竞争者IGBT的3.98微库伦。
在桥式拓扑中,较低的Qrr值可减少单脚的IGBT开启(Switching-on)损耗;切换效能可採用商业用5.5kW併联型太阳能逆变器进行验证,其具备前端升压阶段和双极控制全桥式逆变器阶段,两阶段的切换频率皆为19kHz。在初始设计中,升压阶段维持不变,而是将650伏特IGBT和600伏特IGBT用于全桥式逆变器阶段。
图2显示逆变器导入两款IGBT效率测试结果,650伏特方案的EURO和CEC加权效率分别为94.37%及95.08%,而600伏特方案则分别为93.67%及94.37%,由于新型场截止沟槽式IGBT具备优异的切换效能,因此显示出更高的效率。
图2
IGBT 相关文章:
- 家电智能功率模块单驱动电源方案(10-07)
- IGBT 驱动器提供可靠保护(04-14)
- 各种IGBT 式感应加热电源性能比较(07-20)
- IGBT电力电子装置的应用详解(11-04)
- IGBT及其子器件的四种失效模式比较(06-13)
- IGBT安全工作区的物理概念和超安全工作区工作的失效机理(06-21)