各种IGBT 式感应加热电源性能比较
引言
感应加热电源广泛应用于金属热处理、淬火、退火、透热、熔炼、焊接、热套、半导体材料炼制、塑料热合、烘烤和提纯等场合;利用在高频磁场作用下产生的感应电流引起导体自身发热而进行加热。感应加热与炉式加热、燃烧加热或者电热丝加热相比,具有显着节能、非接触、速度快、工序简单、容易实现自动化等优点。
感应加热电源主要由整流单元、逆变单元、谐振输出单元、和感应器四部分组成。其中整流单元将工频三相交流电压转换成直流电压;逆变单元电能变换成为几千至上百千赫兹的高频电能;谐振输出单元一端连接逆变器,另一端连接感应器,经隔离和阻抗匹配,通过谐振的方法在感应器中产生强大的高频电流。加热时,感应器在工件中感生高频电流,因此导体迅速被加热。早期的感应加热设备中,逆变单元所需的高频逆变器件决定了装置的形式,它经历了从电子管、晶闸管到目前普遍采用IGBT 的发展历程。
在目前主流的 IGBT 式感应加热产品中,仍有较多的电路和结构方式差异。从整流单元看有可控整流方式和不可控整流方式;从逆变单元看有脉宽调制逆变方式和斩波调压逆变方式;从谐振输出单元看有并联谐振方式和串联谐振方式。各种电路和结构方式在效率、功率因数、可靠性等性能上各有差异。
1 目前产品普遍存在的问题及原因
虽然采用 IGBT 取代晶闸管和电子管已经取得了很大的进步,但目前大多数生产厂商研制生产的感应加热电源设备仍然存在一些普遍问题,这些问题主要表现为:
a 效率较低、电能和冷却水消耗大b 功率元件 IGBT 容易损坏c 电抗器或输出变压器容易损坏d 冷却水回路故障较多e 功率因数较低、谐波污染大f 设备可靠连续运行性能欠佳这些问题主要是因为设计上的缺陷所致,现针对这些问题探讨其原因:
a 由于 IGBT、电抗器、输出变压器、谐振电容器均采取水冷结构,不仅损耗较大、效率较低,冷却水消耗大,而且容易发生因为铜管结垢堵塞导致器件烧毁,也容易发生漏水导致故障范围扩大等问题;且由于水路并联支路很多,系统无法保证每一支路均具有断水保护功能。
b 由于模拟式控制电路不能适应各种变化工况,使得功率元件IGBT 脱离过零软开关状态,因此开关损耗增加、并经常导致IGBT 过热损坏。
c 脉宽调制型(无斩波调压)产品采用软开通、硬关断(或带缓冲的硬关断)电路,因此IGBT 损耗大,且这种方式容易脱离软开关状态导致IGBT 损坏。
d 设备在过压、过载、感应圈短路或部分短路、功率元件过热等情况下控制电路不能起到有效限制和保护作用,导致设备损坏。
e 并联谐振方式的设备容易发生逆变单元过压而损坏器件。
f 控制电路抗干扰能力差,系统运行不稳定或保护限制功能容易误动作,设备可靠性差;或设备设备由于外界因素或偶然因素保护停机后不能自动重起动。
g 整流后直接采用大容量电力电容滤波,无滤波电感或直流侧IGBT 斩波电路,因此功率因数低,输入电流谐波大;如采用电力电解电容,还有发热、串联均压问题、寿命较短等缺陷。
2 新型数字式空冷感应加热电源的主要特点
一种新型引进技术的 感应加热电源主回路如下图所示,该产品为创新的全空冷结构,在中央处理器DSP 的数字式控制下,功率器件IGBT 始终精确工作在零电流开关状态,自动重起动功能保证了设备连续运行的可靠性;与非数字式产品相比,数字式产品在各方面性能均得以提高。
该产品的整流单元为不可控整流,且直流侧采用 IGBT 斩波调压,谐振方式为输出隔离型次级串联谐振。这种电路有效提高了设备效率和功率因数、减少输入谐波、降低IGBT损耗;使得设备可以采用全空冷结构,并消除设备来自水系统的故障;基于这种结构,设备的工作频率为1KHz-100KHz。
2.1 准确可靠的过零软开关IGBT 逆变
高频感应加热电源一般均采用谐振软开关控制,可以大为降低IGBT 开关损耗,且实现自动跟踪谐振频率。
有的产品直流侧没有 IGBT 斩波电路,这是一种软开通硬关断电路,或者是带缓冲的硬关断电路。这种电路的关断损耗较大,且容易脱离软开关状态。采用直流侧IGBT 斩波电路后,可以实现完全的软开通软关断,并将开通损耗和关断损耗均降至最低。
传统控制电路采用锁相环跟踪系统谐振频率,但谐振频率较高时,影响频率跟踪的离散参数比较突出,频率较高时,锁相环精度不够,容易出现脱离软开关的状态,因此开关损耗增大,严重时导致IGBT 损坏。因此,提高控制的准确度是保证IGBT 安全运行的前提条件。
新型 感应加热
- 家电智能功率模块单驱动电源方案(10-07)
- IGBT 驱动器提供可靠保护(04-14)
- IGBT电力电子装置的应用详解(11-04)
- IGBT及其子器件的四种失效模式比较(06-13)
- IGBT安全工作区的物理概念和超安全工作区工作的失效机理(06-21)
- 功率器件IGBT在不间断电源(UPS)中的应用 (06-26)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...