一种基于BOC信号的导航发射信道预失真方案
0 引言
BOC调制信号的频谱分裂在中心频点的两侧,有利于避开与中心频点信号频谱的相互重叠,从而减小信号间的相互干扰,以实现频段共用。此外,BOC调制信号比BPSK调制信号的相关函数主瓣更窄,它具有更高的码跟踪精度和更强的抗多径干扰能力。由于BOC调制的独特性使其在新一代全球卫星导航系统中倍受青睐。
BOC调制信号经过导航卫星发射信道时,由于各个器件的非理想特性将会使其产生一定程度的失真,致使导航系统的性能会受到一定的影响。目前,国内外对此已有相关的研究。文献主要分析Galileo的几个候选BOC 调制信号特性,其中BOC 调制的非线性特性主要是采用固态功率放大器(SSPA)来仿真,分析了输入功率回退(IBO)为0 dB时,BOC调制方式的相关损耗。文献主要分析Galileo的几个候选BOC调制信号的跟踪精度受到线性和非线性失真的影响,分析了由于滤波器带宽的限制而带来的功率损耗和相关损耗。文献主要分析星上高功放对BOC 及其衍生信号的失真影响,主要分析了带宽限制和非线性效应带来的联合影响。
非线性失真对卫星导航系统性能的影响主要在于:引起信号幅度、相位失真,使星座图发生压缩偏转,致使接收方判决检测受很大影响,引起带内失真;产生大量的互调失真和谐波失真,信号频谱扩展产生的邻道干扰(ACI),产生带外失真。因此,对卫星导航信道的非线性补偿研究显得尤为重要。但是,目前国内外大部分只是针对非理想卫星信道对BOC信号的影响进行了研究,对于消除这种影响的研究却甚少。
自适应数字预失真技术是补偿非线性失真最好的方法之一,它通过在非线性器件前构造非线性失真的逆特性来达到线性化目的。随着信息速率的增加,信号带宽不断增加,导航信道不仅具有非线性特性,其记忆效应也越来越明显。对于有记忆效应的非线性失真,若仍采用传统的无记忆预失真技术,非线性补偿机制可能失效或是效果不佳。因此,研究记忆非线性失真的线性补偿技术具有非常重要的意义。
本文即是对BOC 信号进行预失真仿真分析,对导航卫星发射信道进行建模等效,提出将发射信道等效为Wiener-Hammerstein模型,并设计了一种针对此模型的基于直接学习结构的自适应LMS 预失真方案,通过仿真结果可以看出该预失真方案可以很好地消除导航信道对BOC信号的失真影响。
1 导航发射信道模型
根据目前已有的国内外导航卫星发射信道模型,可归纳总结出导航卫星发射信道的等效简化模型如图1所示。
如图1所示,前置滤波器和后置滤波器均采用线性FIR 滤波器,高功放采用行波管功率放大器(TWTA)模型。行波管大功率放大器AM/AM变换表现为幅度非线性失真,AM/PM变换表现为相位非线性失真,通常可用无记忆Saleh幅值-相位模型进行模拟,即:
当综合考虑前置滤波器、TWTA、后置滤波器时,记忆效应不能忽略,此时,导航发射信道实际上可以等效为有记忆Wiener-Hammerstein 模型,即线性时不变系统(LTI_1)后串连一个无记忆非线性模型(NL)后再串连一个线性时不变系统(LTI_2),该模型常用于描述卫星通信中的大功率功放。其结构图如图2所示。
其中每个模块用数学表达式表示为:
综合每个模块可得Wiener-Hammerstein 模型的数学表达式为:
式中:K 表示功放模型的多项式阶数;L 表示功放的记忆深度。
2 预失真方案
预失真方法通常分为查找表预失真和多项式预失真,因多项式预失真较节省RAM存储单元,且收敛速度快,本文选用多项式预失真方法。基于多项式的预失真有直接学习结构和间接学习结构两种,其中直接学习结构的结构简单,算法收敛后能达到比较好的预失真效果,预失真器参数不受功放非线性系统输出端噪声的影响,可直接更新预失真器的参数。但需首先设定PA模型,根据模型估计出放大器的非线性传递函数,再求出逆函数作为预失真器的传递函数。由第一部分导航发射信道模型的描述可知,导航发射信道的主体部分可等效为有记忆Wiener-Hammerstein模型,符合直接学习结构中要求模型已知的条件,所以本文采用直接学习结构。
图3即为基于直接学习结构的预失真框图,在这个结构中,x(n) 为n 时刻的输入信号,y(n) 为功放的输出信号,其中整个系统所期望的响应为d(n),图中的线性放大倍数为G,当e(n) = d(n) - y(n) 在算法收敛于e(n) = 0时,则功放的输出为输入信号的线性,并且有y(n) = G*x(n)。
针对本文建立的导航发射信道为一有记忆非线性信道,为补偿非线性,其逆特性也应具有记忆效应。基于记忆多项式的预失真通常可
- 基于视觉的ADAS解决方案,近在咫尺!(05-07)
- 基于ADSP-TS101S的多芯片数字信号处理系统的实现方案(02-11)
- 精通信号处理设计小Tips(5):三个应用广泛的数学概念(11-20)
- 精通信号处理设计小Tips(6):卷积是怎么得到的?(11-24)
- 精通信号处理设计小Tips(2):数学的作用(11-03)
- 精通信号处理设计小Tips(3):必须掌握的三大基石(11-09)