基于边界扫描的电路板快速测试系统设计
系统是否 工作正常。
数据库管理模块:保存系统数据、测试向量、标准测试结果等数据,用以查询比较等 操作。
(2)物理接口模块
由于在 VB 中不能直接使用命令对计算机端口进行操作,本文中选择动态链接库 inpout32.dll 帮助系统软件实现对底层硬件的控制。在开发计算机端Windows 应用程序时只 需在开发前将其驱动程序相关文件拷贝到计算机,并且在开发过程中注册其动态链接库相应 的API 函数,即可实现并行端口的应用。本文物理接口模块中引用了动态连接库中的两个函 数:Inp32 和Out32 用于并行端口的输入和输出,相关程序代码如下所示。
写入操作:Out add, reg
读出操作:reg = Inp(add) 其中,add 为写入/读出的地址,reg 为写入/读出的数据。
(3)在线测试模块 在线测试模块主要实现对扫描链信号的循环采集,同时将采集到的结果显示在屏幕上。 采集数据的同时对扫描链上信号的变化频率进行统计,实时显示统计结果。可预置中断暂停 条件,使用虚拟工具箱单独显示关键信号状态,储存采集数据,进行信号分析,生成报告表 供维修人员使用。
(4)离线测试模块 离线测试模块主要实现电路板单独测试功能。用户可选择进行自动测试或是手动测试。 自动测试时,系统将已生成的测试向量依次送入被测电路板,然后采集电路板响应向量,将 其与标准响应进行比较。手动测试时,用户可根据需要利用系统提供的工具手动编写测试向 量,系统将一步步执行用户的指令。
3 故障分析策略
在边界扫描测试系统进行循环采集时,一般采集频率较低。例如使用10MHz 的时钟对边 界扫描链上的数据进行移位输出,如果扫描链上有500 个单元,则采集数据频率最高只能达 到20KHz。而电路板上信号的脉宽有的很短,如何对采集到的数据进行故障分析成为系统设 计中的难点。本系统主要采取下列两个方法进行分析。
如果扫描链的采集间隔远大于信号脉宽,系统可能很长时间无法采集到信号的变化,因 此信号统计法需要运行相当的时间才能保证分析的准确性。
方法二:数据分析法
记录采集到的数据,计算每路信号之间的差异,着重观察相同的信号,如全0、全1 或 者其它。出现全0、全1 的引脚易发生呆滞故障,而出现信号的变化且采集信号完全相同的 引脚易发生断路故障。
上述两种方法仅适合于对周期信号的分析。如果电路板某模块的输入输出引脚上信号为 单脉冲信号,且脉宽较短,则在线测试很难采集到它们的脉冲。对于这类模块电路的测试一般采用离线测试的方法人为输入测试向量分析模块输出是否正常。
4 结论
通过实验,该系统能够成功实现对含边界扫描器件(如FPGA 等)电路板的在线测试、 离线测试等功能,而且系统的体积小,测试时与电路板的连接线少,虽然由于测试点有限, 不能提供100%的故障覆盖率,但该系统仍能够为维修人员对含边界扫描器件电路板的快速维修提供有效支持。
本文作者创新点是:将边界扫描技术应用在电路板快速测试系统中,设计了一套具有自 主知识产权的边界扫描测试系统,并对系统的故障分析策略进行了讨论研究,提出对周期信 号采用信号统计法和数据分析法的故障分析策略。
- 远程测控中嵌入式Web服务器的FPGA实现(10-30)
- 基于DSP Builder的DDS设计及其FPGA实现(11-03)
- 基于FPGA的DDS调频信号的研究与实现 (11-04)
- 使用混合信号示波器验证测量混合信号电路(11-05)
- 基于速度匹配软件的网络芯片仿真方法(11-06)
- 利用FPGA实现原型板原理图的验证(11-07)