微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于FPGA的语音端点检测

基于FPGA的语音端点检测

时间:02-22 来源:电子技术应用 点击:

语音端点检测就是从背景噪声中找到语音的起点和终点,其目标是要在一段输入信号中将语音信号同其他信号(如背景噪声)分离并且准确地判断出语音的端点。研究表明,即使在安静的环境中,一半以上的语音识别系统识别错误来自端点检测。因此,端点检测的重要性不容忽视,尤其在噪声环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行[1]。

当前语音识别系统大多以ARM、DSP为设计核心,其设计费用高、缺乏灵活性、开发周期长,而且很难满足高速的系统要求。在对语音端点检测算法的研究中,提出了诸如基于能量、过零率、LPC预测残差等多种算法[2],但这些方法大部分都是基于计算机软件的,不适合进行硬件开发[3]。

FPGA具有功耗低、体积小、速度快等优点,可以满足语音识别系统的实时性要求。本文尝试用FPGA实现语音端点检测,对常用的Lawrence Rabiner端点检测法进行改进,用纯硬件的方法实现语音端点检测,并以"长沙"等词和短语为例,验证其准确性和可行性。

1 FPGA实现语音端点检测基本原理

主要由四个部分完成:预加重、分帧、加窗和端点判断,FPGA实现方法同样要经过这四个步骤。

1.1 预加重

语音信号的平均功率谱由于受声门激励和口鼻辐射的影响,高频端大约在800 Hz以上按6 dB/Oct(倍频程)衰减,这样语音信号的频谱中,频率越高相应的成分越少,因而要得到高频部分的频率比低频部分更困难。所以,对语音信号进行分析之前,要对语音信号加以提升,使语音信号的短时频谱变得更为平坦,从而便于进行频谱分析和声道参数分析。提升的方法有模拟电路法和数字电路法,本设计主要采用数字电路法。一般的数字电路法用一阶的数字滤波器来实现:

式(2)只有移位和加减运算,即用简单的移位来取代复杂的小数乘法运算,从而可以方便地用FPGA实现。

1.2 分帧加窗

分帧处理即将预加重后的语音信号分成多段进行分析,即从原始语音序列中分解出一个新的依赖于时间的序列,便于描述语音信号特征。语音信号具有时变特性,但在相当短的时间范围内,其特性基本保持不变,从而可以进行分段分析。假设语音信号在10 ms~30 ms内平稳,就可以以此时间段为单位将语音信号分ms段进行分析,其中每一段称为一"帧",每一帧的长度叫帧长。为了使帧与帧之间保持连续平滑过渡,分帧一般采用交叠分段的方法,前一帧和后一帧的交叠部分称为帧移。帧移与帧长的比值一般取为0~1/2。为便于语音识别系统中特征的提取,取2n为帧长。本文语音信号的采样频率为16 kHz,取帧长为256(16 ms),帧移为128。

分帧的FPGA实现。其关键就是解决帧移的叠加问题。可以用两个FIFO(F1和F2)来实现,具体过程为:先向F1写入128个数;读取F1中的数得到这帧前128个数,同时将F1中的数写入F2中;F1的数读完时F2也已写完,此时再读取F2中的数得到这帧的后128个数(这时就得到了一帧的语音信号),在读取F2中数据的同时向F1写入下一帧的数据,这样一直循环就完成了语音的分帧。

分帧后帧之间重新拼接处语音信号的频谱特性和原来相比会有差异。为了使语音信号在帧之间重新拼接处的频谱特性与原来更加接近,就要进行加窗处理。在语音信号处理中常用的窗函数是矩形窗和汉明窗[5]。它们的表达式如下(其中N为帧长):

矩形窗:

矩形窗的主瓣宽度较小,因而具有较高的频率分辨率;但它的旁瓣峰值较大,因此其频谱泄露比较严重。相比较而言,虽然汉明窗主瓣宽度较矩形窗大一倍,但是它的旁瓣衰减较大,因而具有更平滑的低通特性,能够在较高程度上反映短时语音信号的频谱特性,所以本文采用汉明窗。

加窗的FPGA实现。加窗就是用分帧后的数据乘以窗函数。在FPGA的实现上加汉明窗的过程难点是小数余弦乘法运算,如果用算法来实现运算会比较慢。这里考虑到N比较小,可以采用查表法实现加窗处理。查表法就是将窗函数的各个值存在ROM里面,依次查找。这里用DSP Builder工具生成窗函数的各个值,因为Altera公司开发的DSP Builder工具有很强的数字信号处理功能,能很好地完成窗函数的运算。具体操作步骤为:在Matlab中打开simulink工具并打开Altera DSP Builder Blockset工具箱,然后新建".mdl"文件,在工具箱中找到相应的模块并连接。在"hamming_table"模块的"Matlab Array"中输入"0.54-0.56*cos([0:2*pi/255:2*pi])"。然后编译、综合,系统就会自动生成查表法要用到的".hex"文件。

1.3 端点判断

端点判断是整个端点检测中最重要的部分,也是计算量最大的部分。所以算法的选择非常重要,本文用算法是根据Lawrence Rabiner端点检测法改进而来的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top