在高速信号采集系统中利用FPGA实现异步FIFO设计
目前数据采集系统朝着高速和高精度的方向发展。随着FPGA|0">FPGA的集成度和运行速度的提高,可以满足高速数据采集系统的需求。FPGA内部具有丰富的存储单元,易于实现各种存储器(如FIFO|0">FIFO、双口RAM等);另外,基于查找表的逻辑单元可用于实现各种数字信号处理(如滤波等),以辅助DSP处理器做各种预处理。
TI公司推出的高性能数字信号处理芯片TMS320C6000系列,工作频率最高可达到1GHz,具有处理速度快、灵活、精确和可靠性高等优点,作为数据采集系统中的主处理器,可以满足实时性的要求。基于以上考虑,北京合众达公司开发了采用TMS320C6416和FPGA的高速高精度双通道数据采集系统,每个通道的采样率为3Msps,最高可达10Msps,采样精度为14b。系统主要包括以下几部分:高速A/D转换、FIFO数据缓存和EDMA数据传输,系统结构框图如图1所示。
AD9243及转换控制
设计中采用的模数转换器芯片是AD9243。AD9243是ADI公司生产的14位、3Msps高性能模数转换器。AD9240与AD9243完全兼容,因此系统的最高采样率可兼容到10Msps。
模数转换器AD9243的时序控制与传统的A/D有所不同,完全依靠时钟控制采样、转换和数据输出,在第一个时钟的上升沿开始采样转换,第四个时钟上升沿到来时,数据将出现在D1~D14端口上。本文采用系统自通电时起,A/D和时钟电路始终处于工作状态,对数据不停进行转换,以减少误码率,提高采样精度。
FIFO的实现及控制
设计中采用FPGA来实现双通道数据的缓存和数据传输的逻辑控制。Spartan3E是一款高性能低价格的可编程逻辑器件,具有丰富的逻辑单元和存储单元。其内部的BlockRam可以配置为大小不同的各种类型存储器,如单口RAM、双口RAM和同步FIFO,其中FIFO更适合作为A/D采样数据高速写入的存储器。FIFO存储器就像数据管道一样,数据从管道的一头流入、从另一头流出,先进入的数据先流出。FIFO具有两套数据线而无地址线,可在其一端写操作而在另一端进行读操作,数据在其中顺序移动,从而达到很高的传输速度和效率,且由于省去了地址线,有利于PCB板布线。
采用FIFO构成高速A/D采样缓存时,由于转换速度较快,如果直接将ADC采样后的数据存储到FIFO中,对时序配置要求非常严格,如果两者时序关系配合不当,就会发生数据存储出错或者掉数。利用FPGA可以方便地控制时序和数据传输,简单、可靠地实现采样和存储是选用FPGA的优点。该数据采集系统中只采用了一个外部时钟源,直接输入到FPGA,经DCM分频后作为FIFO和ADC的时钟源。
在软件设计中,采用ISE开发环境开发FPGA时,调用Core Generator来构造FIFO,可以设置FIFO的参数,如深度和宽度;设置FIFO的各种标志和控制位,如空满、半满全满、半空全空、可编程满和可编程空等标志位;写使能、读使能等控制位,以便实现与高速A/D和DSP的逻辑接口。FIFO的输入输出引脚如表所示:其中WR_EN由DSP的GPIO口引出,控制数据是否写入到FIFO中,输出引脚中只用到了PROG_FULL即可与DSP进行数据传输。
FPGA的作用除了构造FIFO以实现数据通道复用外,还可以作为协处理器进行实时要求性高的数据预处理(如插值、取平均、FIR滤波等),以减少DSP处理的数据量。设计中采用分布式算法的FIR滤波,首先对ADC转换后的数据进行FIR滤波,然后存入FIFO中以等待DSP的读取。FPGA代替ASIC和DSP作为前端数字信号处理的运算,在规模、重量和功耗方面都有所降低,而且吞吐量更高,开发成本进一步缩小。
FPGA设计中,需提供外部闪存来存储FPGA的下载文件,上电后数据会自动下载到FPGA内部,以对FPGA进行配置。FPGA有多种配置方式,包括主串、从串、主并、从并、SPI、BPI,以及JTAG等方式。串行方式即逐位串行配置,接线简单,但速度比较慢,并行方式即8位同时传输,速度快,但接线复杂。串行方式和并行方式都需要外加闪存作为配置文件的存储器。设计中本文采用C6416的多通道缓存串行口(McBSP)以SPI方式对FPGA进行配置。
图1:系统结构框图
接口和控制电路的设计
系统的接口和控制电路主要包括以下两个部分:
1. ADC与FIFO的接口电路
利用FPGA构造了两个完全一样的FIFO,将两路A/D转换数据分别送入两个FIFO中,实现双通道采样数据的缓存和传输。设计中A/D转换时钟和FIFO写时钟为同一时钟源,自上电起,A/D和时钟电路一直处于工作状态,不停的进行数据的转换,但数据是否写入到FIFO中,由FIFO的写使能信号来决定,当DSP发出写使能信号有效时,转换数据才能存储到FIFO中。
- 远程测控中嵌入式Web服务器的FPGA实现(10-30)
- 基于DSP Builder的DDS设计及其FPGA实现(11-03)
- 基于FPGA的DDS调频信号的研究与实现 (11-04)
- 使用混合信号示波器验证测量混合信号电路(11-05)
- 基于速度匹配软件的网络芯片仿真方法(11-06)
- 利用FPGA实现原型板原理图的验证(11-07)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...