微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 汽车碰撞实验车载测试系统中数据采集板的设计

汽车碰撞实验车载测试系统中数据采集板的设计

时间:03-19 来源:电子技术应用 点击:

  由于数据采集板只用了一块A/D芯片,为了保证各路信号的转换都同步,设计中在多路开关之前给每路信号都加上采样保持电路(AD781)[1]。采集板工作时,每次采样循环中,首先发出采样/保持信号使各通道信号被同时采样后进入保持状态,随后多路开关逐步选通每一路模拟信号进入A/D转换器。

  采集电路采用MAX120的全控制方式(方式1)。在这种方式下形成的系统工作时序如图3所示。

系统工作时,切换通道和启动A/D转换器使用同一条指令:

  STAA $DFF0,CHANEEL

  当这条指令执行时,译码形成的LAE与E时钟信号的逻辑组合使LE呈高电平,选通74HC373,数据总线上的通道号CHANEEL(对应数据总线的AD2、AD1、AD0)和多路开关控制信号MEN通过74HC373分别出现在MAX308的地址选择端和控制端,对应通道的模拟信号经过MAX308输出到缓冲器MAX405。在下个E时钟,LE变成低电平,74HC373锁存通道号和控制信号MEN,选中通道的模拟信号始终保持在MAX308输出端,直到下次通道选择指令被执行。

  MAX308的一路被选通的同时, LAE信号还与写信号2Y2进行逻辑组合作为A/D转换器MAX120的启动信号。考虑到被选中通道的模拟信号出现在MAX308输出端需要一定的建立时间才能达到合适精度,同时工作在方式1下的MAX120其内部采样保持器也需要一定的采样时间(350纳秒)来捕捉输入模拟信号,因此在MAX308的通道切换和启动MAX120之间需要一定的时间间隔才能保证转换结果的精度。为此设计中选择了使LAE与2Y2信号相或,再通过两片MXD1000延迟芯片延时400纳秒作为A/D 转换器的启动信号CON。转换启动后,MCU通过与PA0管脚相连的信号判断转换完成。在读数据指令执行的同时,转换结果被读信号2Y3控制,通过总线缓冲器74HC245送入MCU的数据总线,被读入MCU后再写入存储器单元。

2.4 存储单元

  设计中的数据存储单元选用了两片RAM芯片628512。考虑到实际实验是大强度撞击,使用时用非易失性SRAM来代替。HK1255是与628512完全兼容的非易失性SRAM芯片,可以直接代替628512使用,并且其内置锂电池,在无外部供电的情况下数据能保存相当长的时间。这样就保证了即使实验中遇到大冲击强度使系统电源断掉的情况,也可以把实验中采集的数据保存下来,大大增强了系统的可靠性。

3 采集板软件设计

  数据采集板软件主要实现两个功能:完成对模拟量的采样和存储;与PC机联机通讯。主程序流程如图4所示。在设置采样参数后,数据采集板对4路模拟信号进行一次循环采样,存储结束后根据采样结束标志判断是否已完成数据采集工作。其中采样结束标志是在主模块判断触发后、数据采集板中的外中断(IRQ)响应时,执行中断子程序时设置的。在采集过程中,程序把采集到的数据连续存储,每当所设地址指针到达数据存储区底部时,设定其重新指向存储区顶部,用重新存储的数据刷新原来的数据。采样结束后在数据存储器区最后一次的采样数据之后存储连续$0F个$FF,作为采样结束的标志。数据传输到地面PC机之后,在数据处理中可根据连续的$0F个$FF标志向前判断、选取所采集到的各个通道碰撞波形。这种循环存储方式在有限的存储空间内最大长度地保存了所需要的碰撞时刻前后的波形。

联机通讯软件的作用是在实验之前设定采样参数,在实验之后把每块数据采集板存储器中的数据传输到地面PC机。

  本文介绍了自行研制的用于汽车碰撞实验车载测试设备中的数据采集板。该数据采集板具有以下特点:①采集板使用单独的MCU控制,构成的测试系统在实验过程中不需要地面微机的干预;②用一片A/D芯片实现四通道同步高速数据采集,文中分析了其工作时序;③实现了碰撞实验在大冲击环境下大容量数据的可靠存储;④程序设计上采用了循环存储的思想,最大限度地利用了存储空间;⑤与其它模块一起可以构成更多通道数的采集系统。

  在整个板卡设计中没有采用任何可调节的元器件,在系统固定上采用了很好的固化与缓冲,这些措施也大大提高了系统的耐冲击性和可靠性。在与原有测量系统的对比实验中,对于相同输入信号,使用该数据采集板的车载测试系统与原有系统的采集结果体现了很高的一致性,满量程的误差小于0.8%,符合系统的精度要求,取得了较好的效果。同时这一数据采集板还可以应用在其它需要高速同步采集的测试实验中。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top