汽车电动车窗控制电路设计
锁处于断开状态下,驾驶员侧主开关能控制前、后、左、右4个车窗工作,而副开关则不起作用。
3.新车型电动车窗主要技术参数和功能
新车型电动车窗除了上面所介绍的上升、下降、集控提升(离车关闭)等功能外,还有以下功能。
3.1.防夹功能
3.1.1.防夹功能工作条件
初始化后,手动和自动上升时都有防夹功能,而且防夹的次数不受限制。
3.1.2. 防夹区间
从上密封条下沿4 mm往下,>200 mm,<370 mm区间为防夹区间,如图9所示。
3.1.3.防夹力
在室温(22±5)℃、80 mΩ的线间电阻、14.5 V的工作电压,以10 N/mm的测量仪测量时,玻璃上升的防夹力<100 N。
3.1.4.防夹反转距离
在玻璃手动或自动上升时,一旦受到大于防夹力的阻碍作用,就立即停止上升,并使电动机反转,反转距离为125 mm。
3.2.省电模式
在输入信号消失120 ms后,且电动机温度接近室温25 ℃时,该系统自动进入省电模式,此时模块的静态电流<300 μA。当电动机控制单元一旦得到输入指令就被唤醒了。
3.3.软停止功能
为了防止玻璃上升到顶或下降到底时,电动机受到冲击堵转而降低电动车窗机械的使用寿命,需要有软停止功能,并且手动或自动上升、下降时都有此功能。mPt汽车设计网
3.3.1.上升软停止
当玻璃上升快到顶部时,即在上升软停止点时,会切断电动机的电源使其停止工作,同时通过电动机的惯性使玻璃上升到顶。此上升软停止点为上极限位置下约2 mm处。mPt汽车设计网
3.3.2.下降软停止
当玻璃下降快到底部时,即在下降软停止点时,会切断电动机的电源使其停止工作,同时通过玻璃下降的惯性使玻璃下降到底。此下降软停止点为下极限位置上约12 mm处。mPt汽车设计网
3.4.克服阻碍功能
在玻璃上升过程中,如果玻璃还没到达上升软停止位置,因遇到障碍而无法正常上升时,则在玻璃停止运动后的2 s内,按下降开关键使玻璃运行到下降软停止位置,然后再在2 s内按上升开关键使玻璃运行,则可克服障碍使玻璃正常运行。此上升过程中,没有防夹功能。
3.5.电动机保护功能
对电动机采取保护措施,可以明显提高电动机和整个电动车窗系统的使用寿命。
3.5.1.电动机堵转保护
在电动机堵转的250 ms内,控制单元会切断电动机电源,使电动机停止工作。
3.5.2.电动机温度保护
在控制单元接通电源后,如果没有进行初始化,则电动机的初始温度定为80 ℃;如果进行过初始化,则电动机初始温度定为160 ℃。
正常情况下,如果电动机温度达到170 ℃,则输入的指令无效,一旦电动机温度降低后就恢复功能;如果电动机温度到190 ℃,则立即停止电动机的工作,一旦电动机温度降低后就恢复功能。
3.6.自诊断保护功能
为保证系统的可靠性,同时提高系统的平均无故障时间,采用了自诊断保护措施:如果电源电压超过16 V±0.5 V,则电子模块关闭自动上升功能。
3.6.1.开关触点粘连
当检测到开关触点有长达10 s的粘连后,则不再接收输入指令;如果之后检测到开关触点又断开了,则恢复正常功能。
3.6.2.继电器触点粘连
如果电动机发生堵转,在发出断开指令后仍然检测到继电器接通,则判断继电器触点发生了粘连,于是发出指令使另一个继电器也接通,来切断电动机电源。同时不再接收输入指令,直到再次检测到继电器触点已释放才恢复正常。
3.6.3.霍尔元件保护
如果霍尔元件发生故障,控制单元就接收不到霍尔元件的信号,则控制单元回到基本初始化前的状态,即上升时最多只能上升45 mm的距离,同时不具有防夹功能。
3.7.系统环境自适应功能
由于系统在进行了长时间运行后,会发生胶条老化、钢丝变长和安装定位的松动等情况,以及当环境温度发生变化导致摩擦力变化时,系统会利用自适应功能保证系统可靠、安全地工作。系统在任何时候都不会丢失数据,即使是在突然断电导致电动机停止运行时,当恢复供电后,玻璃会自动下降到底。同时恢复了自动功能和防夹功能。
4.结束语
本文所设计的新车型电动车窗控制电路在笔者公司与国外联合设计的新车型样车上得到了应用,电动车窗能完全按本设计要求工作,功能正常,满足本文所介绍的所有功能。不久将投入批量生产。
- PIC单片机在汽车电动车窗控制器中的应用(06-22)
- 车窗控制系统的LIN2.1协议应用(11-28)
- LIN2.1协议在车窗控制系统中的应用(01-21)
- 基于全桥马达驱动的电动车窗防夹设计(06-13)
- 电动防夹车窗的软硬件设计(06-09)
- 车窗防夹算法的探究和实现(04-27)