微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 汽车电动车窗控制电路设计

汽车电动车窗控制电路设计

时间:04-26 来源:EDN 点击:

上升键或下降键,则玻璃停止上升。

d. 下降(车窗开启).开关向着DOWN方向按下时,DOWN触点首先触发为高电平,如果继续按键 至第2档位,则UP触点也触发成高电平。这里t1为2档触点间的机械延时,t1取决于开关的机械结构,通常最小为5 ms。t2为手松开按键,第2档和第1档之间的延时。

  e. 手动下降.如图7所示,当DOWN为高电平时,即为手动下降。当松开开关时,如果t2>150 ms,则电动机停止,车窗停止下降。

  f. 自动下降.将电动车窗开关按至第2档,则DOWN和UP都为高电平,在松开按键时,如果t2<150 ms,玻璃自动下降。在自动下降过程中,如果按下电动车窗上升键或下降键,则玻璃停止下降。mPt汽车设计网

  从上面的分析可知,1档开关和2档开关都能实现电动车窗玻璃的升降功能,但它们在实现升降功能时技术上是有区别的。

  1档开关升降和停止响应时间比2档开关长,电动机电子控制单元控制软件1档开关也较2档开关复杂。

  2档开关上升、下降和停止均有2次信号输入,信号容易识别;1档开关上升、下降和停止只有1次信号输入,输入信号识别较困难。但1档开关较2档开关结构简单,成本低,现有基础车型使用的是1档开关,因此,新车型决定使用基础车型已经批量使用的1档开关,这样可以节省开发时间和成本。为了解决1档开关输入信号识别相对困难的问题,电子控制单元软件对输入信号的上升沿和下降沿有40 ms的防颤抖时间。

  2.3.集控提升

  电子控制单元集控提升管脚得到低电平信号,全部车窗会关闭,直到车窗完全关闭。集控提升信号来自中控门锁系统。在点火开关断开,中控门锁电子控制单元得到来自遥控器或门锁关闭信号的同时,中控门锁电子控制单元输出低电平(<500mV)信号给电动车窗控制单元集控提升管脚,电动车窗电子控制单元将控制全部车窗完全关闭。

  2.4.新车型电动车窗控制电路

  采用与基础车型相同的电动车窗主控开关和副开关,带电动机电子控制单元,具有集控提升的新车型电路如图8所示。

  新车型电动车窗控制电路(图8)看起来和基础车型控制电路图(图1)相似,但控制原理和方式完全不一样。新车型控制电路取消电动车窗继电器,主要是车窗集控提升功能的需要。按基础车型控制电路,在点火开关断开后,整个控制电路将不再有电源,新车型还用这种方式的话,电动车窗电子控制单元没有电源将不工作,也就不能实现在中控门锁电子控制单元发出集控提升信号后自动关闭所有车窗。

  因此,新车型控制电路改为由蓄电池经熔断器给电动车窗电子控制单元直接供电,解决了车窗集控提升问题。

  电动车窗主开关和副开关电源由点火开关控制,只有点火开关接通总电源后,电动车窗主开关和副开关才有电源,这样设计,是考虑到安全和电源损耗问题。汽车电路设计有一个基本原则,就是在人员离开汽车、点火开关断开后,整车电器不需要带电的,电源都要断开。由于集控提升需要,电动车窗电子控制单元在点火开关断开后需要电源,因此,电动车窗电子控制单元设计时,静态电流设计得很小,2.1.2章有介绍,25 ℃时小于300 μA。

  新车型电动车窗主开关和副开关的电源由点火开关直接控制,是因为新车型电动车窗带有电子控制单元,车窗上升(UP)和下降(DOWN)开关控制的是车窗上升和下降的指令信号,电流为mA级。基础车型控制电路带电动车窗继电器,由经过点火开关的小电流来控制流经电动车窗主开关和副开关的电流,是因为流经电动车窗主开关和副开关的电流是直接驱动电动车窗电动机的大电流,点火开关不能直接承受这样的大电流,所以通过继电器来控制流经电动车窗主开关、副开关和电动机的大电流。

  新车型由于从开关到电动车窗电子控制单元的是小电流指令信号,所以相关导线就不需要基础车型那么大了,新车型设计为1 mm2导线,基础车型为2mm2导线。由于新车型电动车窗主开关和副开关控制的是小电流指令信号,而基础车型电动车窗主开关和副开关控制的是大的工作电流,所以新车型电动车窗主开关和副开关故障率很低,寿命长。

新车型电动车窗开关锁采用和基础车型同样的开关。正常状态下为接通(ON)状态,开关锁按下去后,开关锁处于断开(OFF)状态。在开关锁处于接通状态时,电动车窗主开关能控制前、后、左、右4个车窗工作,电动车窗副开关能控制自己侧车窗工作。基础车型电动车窗在开关锁处于断开状态下,只有驾驶员侧开关(左)能控制驾驶员侧车窗升降外,其它车窗都不能工作。新车型控制电路,在开关

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top