微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗27闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘
首页 > 应用设计 > 汽车电子 > 汽车控制系统中螺线管电流的测量

汽车控制系统中螺线管电流的测量

时间:02-21 来源:半导体设计 点击:

Solenoids in Automotive Control Applications
A solenoid is a linear motor with a fixed range of travel. Solenoids may be designed for simple on-off applications, acting much like relays. For example, they are used this way in starters and door locks.

On the other hand, a linear, or proportional, solenoid is one whose position can be controlled in a precise manner. They are used to operate pistons and valves for accurate control of fluid pressure or flow in applications such as transmissions and fuel injection.

Transmissions require accurate and smooth control of pressure on clutches to change gears, and for controlling the locking torque converter. Electronically controlled transmissions may contain more than eight linear solenoids, all of which require smooth, accurate control. Common-rail diesel fuel-injection applications, with pressures in excess of 2000 psi, may require one linear solenoid per cylinder-and one at the fuel pump-to adjust pressure accurately to maintain predictable injector fuel flow.

Example: Electronic Transmission Control
The automatic transmission is one system in which electronic control is largely supplanting mechanical control because of improvements in drive quality and fuel efficiency. Previous improvements in fuel efficiency and acceleration came with the introduction of the locking torque converter. More recently, a combination of software and hardware using electronically controlled solenoids allowed easier adjustment of the shift algorithms, and provided additional benefits in transmission-shift smoothness and quality.

Overall, electronic control of the transmission allows for a simpler, more reliable, and less costly electromechanical system. Electronic transmission control systems improve the control of transmission shift points, with less abrupt gear shifting and improved shift smoothness. In addition, the flexibility of the electronic control allows for better adaptability to changing conditions. Electronic control of shift points with finer resolution allows better acceleration, improved economy, better load control, and reduced emissions, with minimal effort by the driver. In addition, the electronic control allows the transmission to shift more smoothly with varying load and acceleration.

With an electronic control system it is possible to affect the shift-control algorithm by a variety of inputs in addition to shaft speed, vacuum, and driver input. Some of these parameters include spark advance, injector parameters, input speed sensors, shift selection by wire, engine speed, throttle position, torque-converter speed/lock, ATF temperature, engine temperature, wheel-slip sensors, and inertial sensors. Combining these kinds of inputs allows a wide variety of shift optimization points, adapted to the overall operating conditions. To use these inputs most effectively, it is necessary to have a system benefiting by precise and infinitely adjustable electronic control of the shift points and shift speed.

Hydraulic control is still used to change gears in the electronically controlled automatic transmission. In contrast to the mechanical system, electronic control of the hydraulics in the electromechanical system is executed by linear solenoids that vary the hydraulic pressure applied to the actuators attached to the clutch packs. In order for this to work, it is extremely important to have accurate and repeatable control of the solenoid opening-which in turn allows for accurate, repeatable control of the shift points through the application of precise amounts of hydraulic fluid.

Determining Solenoid Position
The linear solenoid’s position is controlled in a feedback loop. For example, a valve’s downstream pressure can be monitored and used as a feedback signal to compare with the setpoint, adjusting the pulse-width modulation (PWM) duty cycle to control the solenoid. However, it may be difficult, impractical, or very costly to measure the downstream pressure.

A practical alternative is to establish the position of the solenoid by measuring the current through the solenoid. This is possible because the force imposed by the mechanical load on a solenoid is directly proportional to the magnetic field, which, in turn, is directly proportional to the current through the coil. Proportional control of the solenoid is achieved by a balance of the forces between the spring-type load and the solenoid’s magnetic field, which can be determined by measuring the current through the solenoid.

PWM Solenoid Control
The solenoid is powered by using a microcontroller-generated pulse-width modulated input signal to rapidly open and close a FET switch in series with the solenoid and a voltage source (the car’s battery). The average voltage is determined by the ratio of the waveform’s on time to the pulse period. Changes in the pulse width and the solenoid’s mechanical load cause the average current flowing through the solenoid to change. The average current is indicative of the amount of solenoid movement, and thus, fluid pressure and flow.

The relationship between solenoid movement and average current for a particular PWM waveform is established through characterization. While it is true that the magnetic force directly relates to the current through the solenoid, the actual mechanical force and movement are not so closely correlated, since they depend on the construction of the solenoid and the nature of the load. So, characterization is required to correlate the average current to the solenoid opening.

For example, the PWM ratio must be increased when the solenoid is first energized to overcome static friction. Once static friction is overcome, a different PWM relationship is used to move it in and out.

Measuring the Current Through the Coil
The current is thus an important indication of the solenoid’s state. The most effective method of measuring the solenoid current is to measure the voltage across a resistive shunt connected in series with the solenoid, the battery, and the switch. There are several different ways to configure this series circuit for switching and voltage measurement.

Low-Side Current Sense with High-Side Drive
The circuit in Figure 1 shows a switch, connected to the high (ungrounded) side of the battery, in series with the solenoid coil and the grounded resistive shunt. A reversed diode is connected across the coil to clamp (i.e., short-circuit) the inductive voltage generated by the coil when the current is turned off. Using a ground reference for the shunt allows an inexpensive op amp-with indifferent common-mode specifications-to be used in the electronic control unit (ECU) to measure the voltage across the shunt.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top